TRAFFIC INJURY RESEARCH

UNDERSTANDING YOUNG DRIVERS IN ONTARIO: FINAL REPORT

The knowledge source for safe driving

THE TRAFFIC INJURY RESEARCH FOUNDATION

The mission of the Traffic Injury Research Foundation (TIRF) is to reduce traffic-related deaths and injuries. TIRF is a national, independent, charitable road safety research institute. Since its inception in 1964, TIRF has become internationally recognized for its accomplishments in a wide range of subject areas related to identifying the causes of road crashes and developing programs and policies to address them effectively.

Disclaimer

The Ontario Ministry of Transportation (MTO) has provided funding for the report: Understanding Young Drivers in Ontario: Final Report. MTO does NOT warrant the accuracy, validity, completeness or currency of the report. Funding of the report is NOT to be construed as an endorsement of the contents of the report, the Traffic Injury Research Foundation or any other person or entity. Use of this report is completely at one's own discretion and risk.

Traffic Injury Research Foundation 171 Nepean Street, Suite 200 Ottawa, Ontario K2P 0B4 Ph: (613) 238-5235 Fax: (613) 238-5292 Email: <u>tirf@tirf.ca</u> Website: <u>www.tirf.ca</u>

Traffic Injury Research Foundation Copyright © 2014 ISBN: 978-1-926857-64-0

Understanding Young Drivers in Ontario: Final Report

Prepared by:

Ward Vanlaar, Charlotte Pashley, Dan Mayhew, Robyn Robertson, and Marisela Mainegra Hing

Traffic Injury Research Foundation 171 Nepean St. Suite 200 Ottawa, ON K2P 0B4

SEPTEMBER 2014

TABLE OF CONTENTS

EXECUTIVE SUMMARYi	ii
Introductioni	ii
Methodologyi	ii
Research Questionsi	V
Resultsi	V
Conclusion	/i
ACKNOWLEDGMENTS	ii
1.0 INTRODUCTION	1
2.0 BACKGROUND: THE ISSUE AND SOLUTIONS	3
2.1 The Issue	3
2.2 The Solutions	4
2.2.1 Graduated Driver Licensing	4
2.2.2 Driver Education and Time Discounts	5
2.3 Teen Driving Characteristics and Exposure	6
2.4 Conclusion	8
3.0 PROJECT OBJECTIVES	1
3.1 Objectives	1
3.2 Research Questions	2
4.0 METHODOLOGY	3
4.1 Data1	3
4.2 Sample Composition1	3
4.3 Sample Selection1	3
4.4 Research Design	5
4.4.1 Survey response options1	5
4.4.2 Incentives	6
4.4.3 Item Development1	6
4.5 Data Collection	7
4.6 Data Analysis	8
4.7 Weights	8
4.7.1 Univariate and Bivariate Distribution Analyses1	9
4.7.2 Logistic regression analysis2	0
5.0 RESULTS	1
5.1 Research Questions: Results2	1
5.1.1 What are the key driving characteristics of the young driver population in	
Ontario?2	1
5.1.2 What is the amount of driving among young drivers?	4

5.1.3 How often does the driver have access to a vehicle?
5.1.4 How much responsibility do young drivers have for the vehicles they drive?32
5.1.5 What type of vehicles do younger drivers operate most often?
5.1.6 During the G1 licence period, who served most often as the experienced
driver accompanying the young driver?
5.1.7 How many combined hours did the driver spend under supervision (i.e.,
parents/guardians, other adults, driving instructor, etc.)?
5.1.8 Did the driver's parents/guardians establish any rules for driving a vehicle? 36
5.1.9 How often do young drivers' parents/guardians or other family members talk
to them about traffic safety/rules?
5.1.10 How often do young drivers drive on 400-series highways?41
5.1.11 How much experience does the driver have in higher-risk traffic situations
(i.e., night driving, hazardous weather, heavy traffic)?
5.1.12 How do young drivers perceive their driving ability (i.e., before/after or
without BDE program)?50
5.1.13 How often do young drivers engage in risky driving behaviours, and how
do they perceive them?56
5.1.14 What was the primary reason for taking a BDE course or not taking a BDE
course?
5.1.15 How do young drivers perceive the usefulness of the Beginner Driver
Education (BDE) program?74
5.1.16 How often do young drivers take driving lessons outside of Beginner Driver
Education (BDE)?
5.1.17 How often do young drivers utilize public transportation?
5.1.18 Are young drivers aware of the Ministry's various public education tools
targeted at young drivers (i.e., GLS videos)?
5.2 Summary and Discussion
6.0 CONCLUSIONS AND CONSIDERATIONS
REFERENCES
APPENDIX A
APPENDIX B: G1 QUESTIONNAIRE
APPENDIX C: G2 QUESTIONNAIRE

EXECUTIVE SUMMARY

Introduction

Beginner Driver Education (BDE) was implemented in Ontario to ensure the safety and driving competency of young and novice drivers, as well as to improve road safety for all drivers. Its main goal was to deliver a program that would help beginner drivers to develop a positive and responsible attitude towards driving. The program involves several mandatory modes of instruction including a minimum of 20 hours of classroom driving instruction, 10 hours of in-vehicle driving instruction, and 10 additional hours of flexible instruction (i.e., classroom, computer-based, in-vehicle, or driving simulator).

To help encourage participation in the BDE program, drivers who completed a Ministry of Transportation, Ontario-approved program were eligible to reduce the amount of time spent in the 12-month minimum G1-licensing period by up to four months, as well as to receive reductions in insurance premiums. In an average year, more than half of G1 drivers participated in a BDE program and the Ministry estimates that between 55% and 67% of BDE participants obtain a time discount.

Significant decreases in the average fatality rate of young drivers demonstrate that Ontario has been successful in improving young and novice driver safety within the past few decades. However, there is still room for improvement. Young drivers continue to be responsible for a disproportionate percentage of drivers killed on roads in Ontario. Even though programs and policies are implemented with the goal of decreasing these risks to the young driver population, very little is still known about their driving characteristics and behaviours.

With this in mind, the objective of the current study was to help MTO determine the effectiveness of its BDE program by gaining a better understanding of young and new drivers. The three primary groups included in the study were: drivers who completed BDE and took a time discount; drivers who completed BDE without taking a time discount; and, drivers who did not complete BDE.

Methodology

To accomplish the objectives of this project, the Traffic Injury Research Foundation was contracted to survey young drivers in Ontario aged 16-19. The Young Driver Survey was designed to identify similarities and differences in the characteristics and behaviours of young and novice drivers categorized in terms of the three primary BDE subgroups. An online survey of G1 and G2 licensed drivers in Ontario was conducted to gather information about their driving skills, perceptions, behaviours and influences.

The survey questionnaire was carefully developed and tested to ensure the reliability and validity of the measures. The Young Driver Survey consisted of approximately 40-55 questions per participant, depending on their licence class and BDE status. As well, the online questionnaire took approximately 15-20 minutes to complete.

Univariate, bivariate and logistic regression analyses were conducted using Stata statistical software to objectively evaluate specific driving characteristics, behaviours, and perceptions reported by young drivers, and to identify any differences among them.

Research Questions

TIRF.

The questionnaire was designed to assess specific areas of interest within the young driver population. These areas included:

- driving and travel characteristics;
- > licence class;
- > amount of driving (with and without supervision);
- > access to vehicle and public transportation options;
- > parental or familial influences;
- > motivations for participation in the BDE program;
- > perceptions of risks for various driving abilities and behaviours; and,
- > awareness of the Ministry's public education tools targeted at young drivers.

Differences across subgroups of the young driving population were also analyzed to determine the impact that factors, such as completing BDE or obtaining a time discount, had on the many driving behaviours and attitudes studied.

Results

The results of the Young Driver Survey revealed many distinct characteristics, attitudes and behaviours among the young driver population in Ontario. Key findings emerging from the study include:

- > The majority of young drivers believed that BDE improved their driving skills and made them a safer, more knowledgeable driver.
- > After completing BDE, young drivers rated their driving abilities and knowledge significantly higher than those who did not complete BDE.
- > The majority of young drivers reported accumulating between 0-20 hours of supervised driving practice in an average month during their G1 licence period.

- > Drivers who completed BDE and took a time discount were significantly more likely to accumulate more than 10 hours of supervised driving practice in an average month during the G1 licence period compared to drivers who did not complete BDE.
- > Drivers who completed BDE and took a time discount were found to be significantly more likely to engage in risky driving behaviours including: speeding; sending hand-held text messages; making hand-held phone calls; driving while tired; driving with teenage passengers; passing other cars because it was exciting; driving during rush hour; driving at night; driving in adverse weather conditions; and, driving on 400-series highways compared to other young drivers.
- > Drivers who completed BDE and took a time discount were found to be significantly more likely to drive: to school; to work; and, to practice driving compared to drivers who did not complete BDE.
- > Drivers who did not complete BDE were found to be significantly more likely to drive just to go for a drive (i.e., drive for fun) compared to drivers who completed BDE and took a time discount.
- > Drivers who completed BDE and took a time discount were significantly more likely to have unlimited use of a motor vehicle than drivers who completed BDE without taking a time discount and drivers who did not complete BDE.
- > Young drivers were more frequently exposed to high-risk traffic situations (e.g., rush hour driving, night-time driving, adverse weather conditions) during the G2 licence period as compared to the G1 licence period.
- > Almost half (45%) of G2 drivers reported accumulating additional supervised driving practice after obtaining their G2 licence.
- > Almost one-quarter (23%) of young drivers reported driving on 400-series highways during their G1 licence period, a behaviour that is prohibited during the G1 stage.
- > Almost one-quarter (23%) of young drivers reported driving unsupervised at some point during the G1 licence period, even though Ontario's Graduated Licensing System (GLS) requires G1 drivers to have an experienced driver accompany them in the vehicle at all times while they are driving.
- > About half (52%) of G1 drivers indicated that their parents/guardians restricted the number of hours they had access to a vehicle, compared to 38% of G2 drivers.
- > Over 80% of young drivers' parents have talked to them about issues relating to traffic safety including: drinking and driving; texting and driving; and, distracted driving.

Conclusion

TIRF

The results of the Young Driver Survey revealed several positive aspects of BDE. Overall, young drivers believed that they had greatly benefitted from the program, and showed increased confidence in their driving skills and abilities as a result. As well, young drivers who completed BDE and took a time discount were more likely to accumulate at least 10 hours of supervised driving practice, a proven safety measure, in the average month, compared to young drivers who did not complete BDE. This suggests that drivers who take a time discount may have had more motivation to practice driving, in order to receive their G2 licence earlier.

However, results also revealed several areas within the program which may require further attention. As a whole, drivers who completed BDE and took a time discount showed much greater tendencies towards risk taking behaviours while driving during both the G1 and G2 licence periods. With this in mind, consideration should be given to young drivers who obtain their G2 licence earlier and reducing the amount of time spent under supervision. The issue of a time discount component as part of the GLS system should be reviewed given that those who choose to take a time discount were shown to be more likely than others to engage in risky behaviours. In other words, while the BDE program was associated with some positive outcomes for drivers who completed the course, they did not necessarily counterbalance the risks associated with reduced time spent in the protective G1 licence stage. Further consideration to enhance the BDE program, such as increasing the number of mandatory supervised driving hours, or promoting parental involvement and awareness of the risks associated with teen drivers, may also serve to benefit the program.

Additionally, it was found that many young drivers do not adhere to the mandatory restrictions of the GLS program, such as the requirement to have a qualified supervising driver accompany them, or not driving on 400-series highways (i.e., a network of controlled access highways spanning southern Ontario), during their G1 licence period, suggesting the need for increased awareness and enforcement of these restrictions. Without compliance to the restrictions and rules of GLS, the safety benefits associated with driving under low-risk conditions during the G1 licence period may be compromised.

ACKNOWLEDGMENTS

TIRF would like to acknowledge the assistance of the following individuals who shared their expertise in the development of this report and who reviewed and commented on earlier drafts of this report. Their insights helped us to develop a well-rounded document.

Professor Barry Watson, Ph.D. Director Centre for Accident Research and Road Safety-Queensland (CARRS-Q) Queensland, Australia Ruth Shults, Ph.D., MPH Senior Epidemiologist Injury Center, Centers for Disease Control and Prevention

TIRF also acknowledges the assistance of the following individuals who completed various tasks associated with conducting the Young Driver Survey. Their contributions to this project were greatly appreciated.

Stephen Brown, Research Associate Jennifer Hall, Administrative Assistant Erin Holmes, Research Scientist Anna McKiernan, Research Associate Shawna Meister, Research Coordinator Luciana Nechita, Administrator, Marketing and Communications Bruce Scott, Vice President, Finance and Administration

The opinions, findings, and conclusions expressed in this report are those of the authors.

vii

1.0 INTRODUCTION

In April 1994, Ontario introduced North America's first Graduated Licensing System (GLS). The aim of this program was to reduce the risk of collisions and injuries among newly licensed drivers. Previous evaluations have shown GLS to be effective in this regard (Boase and Tasca 1998; Vanlaar et al. 2009; Mayhew 2005; Mayhew 2008; Williams et al. 2013).

The Ontario GLS involves the progression of learning to drive through several stages of driver licensing termed G1, G2, and G sequentially. The G1 licence stage requires that young drivers only operate vehicles under the supervision of a qualified supervising driver for a minimum of 12 months. Various other restrictions are in place for new drivers in the G1 stage and in the G2 stage and these are lifted as they progress to obtaining their full G licence.

An integral part of this graduated system encourages G1 drivers to participate in a Ministry-approved Beginner Driver Education (BDE) program to further develop their driving skills and abilities. In April of 2009, the Ministry of Transportation, Ontario (MTO) introduced new enhancements to its Beginner Driver Education (BDE) program to ensure that the highest standards of quality in the content and delivery of driver education in Ontario were being met. The BDE program aims to help young drivers to develop positive attitudes towards driving, as well as to foster safe and responsible driving behaviours in new drivers. Driver education programs in Ontario must meet rigorous ministry standards for training, administration, and advertising before they are considered to be "Ministry of Transportation-approved".

Ministry-approved BDE program components consist of two main parts including classroom and in-vehicle instruction. Courses are comprised of a minimum of 20 hours of classroom instruction, 10 hours of in-vehicle instruction, as well as 10 hours of flexible instruction, delivered by a qualified instructor. BDE course content includes: the rules of the road; vehicle components; vehicle handling; driver behaviour; respect and responsibility; sharing the road; attention; and, perception and risk management. For more information about GLS or BDE programs in Ontario, refer to the Ministry of Transportation, Ontario's website (http://www.mto.gov.on.ca).

Upon completion of a BDE program, G1 drivers can choose to take the on-road test after eight months rather than after the full 12 months, and if successful on this test, exit the G1 stage to the G2 stage. This four month reduction in the time spent in the G1 licence stage, called a "time discount", was introduced to encourage drivers to learn safe driving practices and the rules of the road through an approved driving course.

Ontario has seen significant improvement in the safety of its drivers over the past years, and GLS has likely contributed to this positive trend. In 2010, the fatality rate in Ontario was 0.63 per 10,000 licensed drivers, the second lowest ever recorded in Ontario. However,

the fatality rate for persons aged 16-24 was higher, with 0.93 fatalities per 10,000 licensed drivers (ORSAR 2010), suggesting that teens and young adults continue to represent a disproportionately high number of deaths on Ontario roadways.

Further progress in reducing young driver crashes requires a better understanding of young drivers and the risks they pose in traffic. There is a significant need for an enhanced understanding of the characteristics and behaviours of young drivers to be able to improve the safety of all drivers on the road, and this is the focus of this report.

2.0 BACKGROUND: THE ISSUE AND SOLUTIONS

2.1 The Issue

Research has demonstrated that teenage drivers, particularly 16- and 17-year-olds, pose significant road safety and health concerns in Canada and elsewhere. The crash rates of young drivers have been repeatedly shown to exceed those of older, more experienced drivers (e.g., Mayhew and Simpson 1990; Mayhew and Simpson 1995; Mayhew et al. 2004; Mayhew and Simpson 1999; Mayhew et al. 2006; Williams 2003; Lee et. al. 2011; Tefft 2012). Williams (2003), for example, reported that in the United States (U.S.) teenage drivers had crash rates (measured in number of crashes per million miles of travel) much higher than older drivers; 16- and 17-year-old drivers were involved in 35 and 20 crashes per million miles of travel, respectively, whereas drivers in their early 20s and those 40–44 years of age were involved in 9 and 4 crashes per million miles, respectively.

Teenage drivers do not simply have a higher incidence of property damage collisions; a similar pattern emerges for fatal crash rates. In the United States, the per-mile fatal crash involvement rates for drivers aged 16 and 17 were respectively 3 times and 2 times that of drivers aged 20–24, and 13 times and 8 times that of drivers aged 40–44 (Williams 2003).

Additionally, data compiled by MTO in the Ontario Road Safety Annual Report (ORSAR) for 2010 showed that 26 teens aged 16-17 and 31 teens aged 18-19 were killed in road crashes in Ontario; a further 2,025 teens aged 16-17 and 3,204 teens aged 18-19 were injured in road crashes. ORSAR also reported that 6,614 drivers aged 16-17 and 15,132 drivers aged 18-19 were involved in crashes. When taking into account the total number of licensed drivers, teen drivers accounted for a disproportional number of drivers involved in collisions.

While it is clear that teenage drivers constitute a significant traffic safety problem, the consequences of their crashes extend beyond just young drivers. Teen drivers put other road users, as well as teenage passengers at considerable risk. Research has shown that many teens die as passengers in motor vehicles, frequently in vehicles driven by a teen driver (Williams 2003; Williams et al. 2005; Williams and Wells 1995). A recent American Automobile Association (AAA) study (2006) found that the majority of fatalities in crashes involving 15-to-17-year-old drivers were people other than the teen driver: 36.2% of those killed were the teen drivers themselves, but 63.8% were others, including passengers riding in the teen driver's vehicle (31.8%), occupants of vehicles operated by drivers at least 18 years old (24.2%), and non-motorists such as pedestrians and bicyclists (7.5%). Teen crashes clearly place other road users at risk.

On a more positive note, improvements in the safety and crash risk of teen drivers have been made in recent decades and Ontario has been successful in enhancing young and novice driver safety. For example, from 1990-2010, Ontario experienced a decrease of 74% in the average fatality rate per licensed drivers aged 16-19, as well as a 61% decrease in the number of young drivers killed or injured on roads (ORSAR 2010).

2.2 The Solutions

TIRF.

Primary safety measures MTO has implemented to address the elevated crash risk of young drivers include the Graduated Licensing System (GLS) and the Beginner Driver Education (BDE) program. As part of the GLS, novice drivers have the option to exit the G1 stage after eight months (as opposed to after the full 12 months) once they have successfully completed a Ministry-approved BDE program and have passed the G1 on-road test. This four-month "time discount" was created to encourage drivers to learn the rules of the road and obtain technical driving skills through the formal instruction of a BDE program. The effectiveness of these, and similar programs, is described below.

2.2.1 Graduated Driver Licensing

There is a growing body of research demonstrating that Graduated Driver Licensing (GDL, or GLS) is an effective safety measure. Almost all the scientific evaluations conducted to date have reported positive safety benefits, typically measured in terms of crash reductions. Studies into the safety effectiveness of graduated driver licensing in Canada, the United States, and New Zealand have shown overall reductions in crashes ranging from 4% to 75%. Most of these studies have found that the crash risk of teen and new drivers has been reduced by about 20% to 40% (Vanlaar et al. 2009; Mayhew 2005; Mayhew 2008; Williams et al. 2013).

Given the diversity of GDL programs, it is not surprising that the magnitude of the crash reductions reported to date have varied so much. However, this variability may also be a result of the different evaluation designs and statistical analyses used in the studies, ranging from simple pre-post comparisons with no control group(s), which are needed to account for the effects of other factors and events influencing collisions, to the use of powerful interrupted time series analysis. As well, the basic groups studied have differed (e.g., the New Zealand program originally applied to drivers under the age of 25; Canadian programs apply to all novices not just young ones; and, U.S. programs apply primarily to drivers under the age of 18).

In Canada, the first GDL program was implemented in Ontario in April 1994. Similar to GDL programs elsewhere, evaluations of the Ontario GLS program have shown significant safety benefits. Boase and Tasca (1998) conducted an interim evaluation of the Ontario program using a simple pre-post comparison group design. They found that the overall collision rate per 10,000 novice drivers licenced in 1995 (program group) was 31% lower

than the rate observed for 1993 novice drivers (comparison group). The overall collision rate declined with the introduction of GDL for all age groups of novice drivers: a 31% reduction among those aged 16-19; a 42% reduction among 20-24 year olds; a 38% reduction among 25-34 year olds; a 37% reduction among 35 to 44 year olds; a 24% reduction among 45-54 year olds; and a 19% reduction among novice drivers aged 55 and older.

Mayhew et al. (2002) evaluated the safety effects of the Ontario GLS program in terms of crash reductions among drivers aged 16-19 of passenger vehicles and motorcycles. Per-capita collision rate comparisons and time series analyses of monthly collision data were used to examine changes and trends in the collisions of the target group (Ontario drivers aged 16-19) compared to changes and trends in the collisions of the internal control group (Ontario drivers aged 25-54). The analyses revealed that the most dramatic reductions occurred among 16-year-old drivers of passenger vehicles. In terms of the number of 16-19-year-old drivers of passenger vehicles involved in total collisions and casualty collisions, intervention analysis ARIMA modeling showed significant reductions attributable to the program, that are summarized below.

	Total collisions	Casualty collisions
16-year old drivers	-73%	-72%
17-year old drivers	-26%	-28%
18-year old drivers	-29%	-38%
19-year old drivers	-10%	

Both per-capita and per-driver collision rate comparisons showed that the positive impact of the Ontario GLS program was evident among young drivers who more recently entered the program several years after implementation, demonstrating the permanence and persistence of its safety effect.

The Mayhew et al. study of GLS in Ontario and numerous other studies of programs elsewhere have shown that GDL has had a positive effect on the collision involvement of 16- and 17-year-old drivers. GDL effects on 18- and 19-year-olds, however, have been less clear and there has been growing concern for the need to address this issue, for example, by raising the licensing age (Tefft et al. 2013; Williams et al. 2013).

2.2.2 Driver Education and Time Discounts

Reviews of the evaluation literature consistently report that driver education fails to reduce collisions and convictions (Christie 2011; Engstrom et al. 2003; Lonero and Mayhew 2010; Mayhew 2007; Mayhew and Simpson 1996; Mayhew and Simpson 2002; Nichols 2003; Roberts et al. 2002; Thomas et al. 2012; Vernick et al. 1999; Williams et al. 2009; Woolley et al. 2000). This is not a result specific to driver education programs that have been

evaluated in the United States but is a conclusion of evaluation studies conducted in other countries over the past several decades as well as a finding of evaluations that have used experimental designs with random assignment of teens who take or do not take driver education.

Previous research has also shown that a "time discount" that allows teen and new drivers to spend less time in the learner phase of the graduated system may actually negatively impact the safety of young drivers. Several evaluation studies in Ontario, Nova Scotia, and British Columbia have reported that the time discount for driver education increases, rather than decreases, the risk for novice drivers. Drivers who received the time discount had higher crash rates than those who did not: 45% more crashes in Ontario, 27% more in Nova Scotia, and 45% more in British Columbia (Boase and Tasca 1998; Mayhew et al. 2003; Wiggins 2004). Mayhew and colleagues (2002) also reported that the time discount for driver education had a dramatic negative impact on the crash rates of Ontario novice drivers, a finding consistent with interim results reported earlier by Boase and Tasca (1998). More recently, in 2007, the Auditor General of Ontario found that collision involvement rates for drivers who have taken the Ministry-approved course were higher than for those who had not taken the course (Auditor General of Ontario 2007). However, it has since been suggested that these differences in collision rates were largely the result of the time discount, age differences of G2 drivers who had and had not taken BDE, and other factors, and not necessarily the BDE program (Auditor General of Ontario 2009; MTO 2013). As well, a recent study in Quebec also found that adolescents who received a time discount for driver education had higher crash rates than other adolescent drivers (Hirsch et al. 2006).

Evaluations of international licensing programs have also demonstrated the risks associated with allowing for a time discount to be taken in lieu of completing a driver education course. For example, a review of crash data in New Zealand found that the crash risk of those drivers who received a time discount (up to 6 months) before the mandatory 18-month time period of driving on a restricted licence was 2.9 times higher than those who did not receive the time discount (Lewis-Evans 2010). Despite a longer restricted phase of licensure compared to North American jurisdictions, the negative impact of a time discount was still present.

2.3 Teen Driving Characteristics and Exposure

Understanding teen driving characteristics and exposure is critical, especially when they are initially licenced, because teens have the highest crash risk during the first few months and miles of independent driving (Mayhew et al. 2003; McCartt et al. 2003; McCartt et al. 2009; Sagberg 1998; Lee et al. 2011). For example, McCartt et al. (2003), using self-reported exposure data, found that crash risk was highest during the first 500 miles driven after licensure. This study also showed that the average miles driven each month by teens increased during the first 10 months of licensure, but at a steadily declining rate and was

TIRE

flat over the next eight months of driving. They also reported, however, that teenagers accumulated driving exposure after licensure at widely varying rates.

Teenage driving exposure issues have recently been identified as one of the five priority critical research need areas in the Transportation Research Board Circular "Future Directions for Research on Motor Vehicle Crashes and Injuries Involving Teenage Drivers" (Foss 2009). To address this need, the Transportation Research Board's Sub-Committee on Young Drivers convened a mid-year workshop on "measuring young driver exposure" (July 2010). Workshop participants underscored the need for research that rigorously and accurately collects teen driving exposure data to improve our understanding of how much teens actually drive and under what circumstances, and how their driving and risk change over time. Copies of workshop presentations and summaries are available on the sub-committee's website: (http://www.youngdriversafety.org/presentations 2010-mid-year-meeting.cfm).

In the past, teen driving exposure data have commonly been obtained through self-report surveys/interviews and teens' completion of trip diaries (e.g., Mayhew et al. 2006; Bureau of Transportation Statistics 2006). Researchers commonly ask teens to report their driving in terms of miles, trips, or time over a period of a day, week, month or year. The primary focus has often been on the quantity of exposure (e.g., miles driven) rather than the quality of exposure (i.e., the context in which driving takes place). Although self-reported exposure measures have been useful, the accuracy of driving miles estimates by teen drivers has been questioned. Leaf et al. (2008) tested three different measures of teenage driving exposure: telephone survey about their preceding week of driving; a daily trip log for the next week, and a second survey about the details of the logged week's trips and miles; and having teens provide odometer readings. Results showed that single self-report estimates frequently understated total miles driven but prompted reviews provided more accurate information. They also observed that odometer readings provided useful information for teens who own their vehicle but not for teens who share vehicles or drive multiple vehicles.

Eshani et al. (2010) used trip diaries and geo-spatial mapping to examine the driving exposure of 16-17 year olds in Michigan within a 48-hour survey period. Minutes driven and number of trips taken were recorded by participants in their travel diaries. In terms of mapping the trips of teen subjects, origin and destination points for reported trips were geo-coded by the Michigan Department of Transportation. The authors calculated miles driven using origin and destination coordinate data points projected onto a road network of Michigan. They reported that young drivers with the following characteristics drove more than their peers: employed; greater access to a vehicle; and from urban residences. The authors also found that all teen 16-17 year old drivers in their study drove substantially more during the day than at night, and they drove more often on their own than with passengers. They also found that male and female teenagers did not differ much in overall driving exposure and driving behaviour. Finally, the authors highlighted several

sampling and methodological limitations of their study and underscored the need for teen driver exposure data using in-vehicle devices. And, in this regard, recent studies have emerged that use in-vehicle recording devices to examine the amount and conditions of teen driver exposure (e.g., Lee et al. 2011; Klauer et al. 2011) or to modify teen driving behaviour through feedback (e.g., McGehee et al. 2007; Farmer et. al. 2009; Toledo et al. 2008; Prato et al. 2010).

Lee et al. (2011) conducted a Naturalistic Teenage Driving (NTD) study which involved installing a data acquisition system in the vehicles of 42 newly licenced teenage drivers 16 years of age during their first 18 months of independent driving. They found that subjects drove an average of 315 miles in the first month to 441 miles in the last month, although this difference was not statistically significant. Similar to other studies based on self-report and trip diaries, they reported a wide range of exposure to driving between participants.

Klauer et al. (2011), as part of the NTD study, examined the nature of teenage driving during the first 18 months of licensure in terms of known risk factors. The authors reported that average miles driven or average night-time miles driven did not increase over the 18 month study period. The total miles driven per teenage driver was highly variable, consistent with the findings of previously mentioned studies. The majority of the teen driving involved no passengers (62%), and driving with no passengers increased over time. Teens who owned their own vehicle were also more likely than others to speed more frequently overall, and speed more frequently at night and with multiple teen passengers. This finding is consistent with another study conducted in Queensland, Australia which found that young drivers who owned their own vehicle reported driving for greater distances and engaging in risky behaviour (Parker et al. 2011).

These recent naturalistic studies using instrumented vehicles are promising in that they generate much needed data that improves our understanding of teen driving characteristics and exposure. However, they have suffered from methodological and other limitations, including: small sample sizes that detract from the generalizability of the findings; limited contextual data (e.g., no data on road surface conditions, weather conditions, traffic density, geography); difficulties with driver identification; challenges with subject recruitment and retention/attrition; and issues related to the use of multiple in-vehicle devices and the management of a myriad of data from multiple systems in a relational database/analyses. Naturalistic studies are also a very expensive method to obtain information on the driving characteristics and behaviours of young drivers. Self-report surveys/interviews are a much less expensive method of gathering such information and have generated useful data in the past that has increased understanding of the driving characteristics and exposure of young drivers.

2.4 Conclusion

In summary, there is an abundance of research related to the factors contributing to teen driver risks and fatalities. However, there continues to be knowledge gaps regarding

specific behaviours and characteristics of teenage drivers that may contribute to increasing these risks. As well, more information about the effectiveness of driver education is needed. This study aims to contribute to this knowledge generation by exploring the attributes and behaviours of young drivers in Ontario's GLS program with regards to their participation (or non-participation) in the Ministry's BDE program.

3.0 PROJECT OBJECTIVES

3.1 Objectives

The primary objective of this assignment was to determine the effectiveness of the MTO BDE program by generating a greater understanding of the driving characteristics and behaviours of young drivers and collecting key exposure variables among the following three groups of young drivers:

- > 16-19 year olds who participated in a BDE program and did take a time discount;
- > 16-19 year olds who participated in a BDE program but did not take a time discount; and,
- > 16-19 year olds who did not participate in a BDE program.

To achieve this objective, a survey of young and novice drivers (ages 16-19) was conducted to identify characteristics and behaviours unique to them. A random, representative sample of young drivers was used to collect the following information:

- > driving and travel characteristics;
- > licence class;
- > amount of driving (with and without supervision);
- > access to vehicle and public transportation options;
- > parental or familial influences;
- > motivations for taking or not taking BDE;
- > perceptions of risks for various driving behaviours;
- self-reported driving ability and risky driving behaviours; and,
- > awareness of the Ministry's public education tools targeted at young drivers.

The outcomes of this investigation may contribute to the development of educational materials or marketing tools that can be targeted towards specific groups within the young driver population in Ontario. As well, it may also contribute to the development of policy and legislative measures to enhance GLS and BDE. As such, this survey was designed to also be able to analyze questionnaire responses according to various demographic information variables (e.g., urban/rural populations).

3.2 Research Questions

Given the objectives and goals of MTO's BDE program, the following research questions were addressed in the survey:

- > What are the key driving characteristics of the young driver population in Ontario? Are these characteristics significantly different among drivers who completed a BDE program (with or without time discount) and drivers who did not complete a BDE program? If so, are these differences statistically significant?
- > What is the amount of driving among young drivers?
- > How often does the driver have access to a vehicle?
- > How much responsibility do young drivers have for the vehicles they drive?
- > What type of vehicles do younger drivers operate most often?
- > During the G1 licence period, who served most often as the experienced driver accompanying the young driver?
- > How many combined hours did the driver spend under supervision (e.g., parents/guardians, other adults, driving instructor, etc.)?
- > Did the driver's parents/guardians establish any rules for driving a vehicle?
- > How often do young drivers' parents/guardians or other family members talk to them about traffic safety/rules?
- > How often do young drivers drive on 400-series highways?
- > How much experience does the driver have in higher-risk traffic situations (e.g., night driving, hazardous weather, heavy traffic)?
- > How do young drivers perceive their driving ability (i.e., before/after or without BDE program)?
- > How often do young drivers engage in risky driving behaviours, and how do they perceive them?
- > What was the primary reason for taking a BDE course or not taking a BDE course?
- > How do young drivers perceive the BDE course?
- > How often do young drivers take additional driving lessons outside of BDE?
- > How often do young drivers utilize public transportation? How much access? Feasibility of using public transportation?
- > Are young drivers aware of the Ministry's various public education tools targeted at young drivers (e.g., GLS videos)?

4.0 METHODOLOGY

4.1 Data

A contact list containing all G1 and G2 licensed drivers in Ontario was generated from MTO's driver database. The names of drivers were excluded from this list to ensure confidentiality and privacy. The database included several categorical variables for each driver including: age at the time of data extraction; postal code; licence type; whether or not they had completed BDE; and, whether or not they had taken a "time discount". These variables were used to ensure that a random, representative sample of teen drivers was surveyed across the three BDE-status groups (i.e., completed BDE with time discount; completed BDE without time discount; and, did not complete BDE). This contact list was also used to mail out survey invitation letters to the household of selected participants.

4.2 Sample Composition

The target population for the survey consisted of young drivers residing in Ontario between the ages of 16-19 years old. All participants were G2 licensed drivers, with the exception of 16-year old G1 licensed drivers who either: had completed BDE without taking a time discount or, did not complete BDE.

As well, only those aged 16 years and 8 months or older were invited to participate, because this is the point at which they could become eligible to benefit from the completion of BDE. In other words, the minimum age at which an individual could have (or have not) completed BDE and taken a time discount to obtain their G2 licence is 16 years and 8 months old. Since this research is specific to being able to make these distinctions among drivers based on their BDE-status, only those individuals who could have possibly completed BDE and taken a time discount at the time of the survey were included. Therefore anyone younger than 16 years and 8 months was not included in the study, as it would be impossible to predict whether or not they would complete BDE or take a time discount.

4.3 Sample Selection

A total of 9,008 addresses were sampled from the database of eligible drivers as part of the study. Three separate samples were drawn throughout the study to ensure target response numbers (1,200 responses) were obtained. The first sample contained 6,000 addresses, the second contained 1,008 addresses, and the third was comprised of 2,000 addresses. The objective behind the following sampling strategy was to obtain a balanced and representative number of participants in each of the three targeted categories of BDE drivers, across age and demographic variables.

TIRF.

Three key variables were used to stratify the sample: age when the sample was drawn (four categories: 16, 17, 18 and 19), BDE status (three categories: teen completed BDE and took the time discount, teen completed BDE but did not take the time discount, teen did not complete BDE) and the distinction between rural versus urban as determined by the postal code. As can be seen in the first two tables (see Table 1 & Table 2 on next page), the distributions are balanced according to the variables age and BDE status (i.e., an equal number was to be sampled for each category of these two variables). However, with respect to urban and rural, the design is unbalanced in that approximately 70% of sampled records were in the urban category and 30% in the rural category. This was done to ensure an adequate number of responses were obtained in each stratum so that statistical significance, with respect to a larger population, could be established in the analyses.

The stratification of the third sample of addresses (see Table 3) was drawn and distributed across the matrix according to the response rates from the two previous samples. It was determined that certain groups (e.g., 16-year olds who completed BDE and took a time discount) had higher response rates to this survey than other groups of drivers in the study. Those cells which were found to have lower overall response rates from participants were identified and oversampled in this selection to ensure even distributions of responses across the stratification matrix in the final results.

The following tables depict the stratification matrices used to classify individuals within the target groups of the study for each new sample of participants.

Table 1. Sample	#1 (Total	: 6000)					
Age (at time of	BDE with	n time	BDE with	out time	Non-BDF		
data extraction)	discount		discount				
16 years old	Urban:	353	Urban:	353	Urban:	353	
	Rural:	147	Rural:	147	Rural:	147	
17 years old	Urban:	353	Urban:	353	Urban:	353	
T7 years old	Rural:	147	Rural:	147	Rural:	147	
18 years old	Urban:	353	Urban:	353	Urban:	353	
To years old	Rural:	147	Rural:	147	Rural:	147	
19 years old	Urban:	353	Urban:	353	Urban:	353	
r9 years old	Rural:	147	Rural:	147	Rural:	147	
Includes valid G2s or only)	nly (except	for 16 yea	r olds in sha	ded cells, w	hich consis	t of G1s	

Table 2. Sample	Table 2. Sample #2 (Total: 1008)											
Age (at time of data extraction)	BDE with discount	ı time	BDE with discount	out time	Non-BDE							
16 years old	Urban:	59	Urban:	59	Urban:	59						
To years old	Rural:	25	Rural:	25	Rural:	25						
17 years old	Urban:	59	Urban:	59	Urban:	59						
	Rural:	25	Rural:	25	Rural:	25						
18 years old	Urban:	59	Urban:	59	Urban:	59						
To years old	Rural:	25	Rural:	25	Rural:	25						
19 years old	Urban:	59	Urban:	59	Urban:	59						
T9 years old	Rural:	25	Rural:	25	Rural:	25						
Includes valid G2s o only)	nly (except	for 16 yea	r olds in sha	ded cells, w	/hich consis	t of G1s						

Table 3. Sample	#3 (Total	: 2000)					
Age (at time of data extraction)	BDE with discount	BDE with time discount		out time	Non-BDE		
16 years old	Urban:	0	Urban:	258	Urban:	127	
To years old	Rural:	0	Rural:	0	Rural:	62	
17 years old	Urban:	0	Urban:	120	Urban:	71	
T7 years old	Rural:	0	Rural:	16	Rural:	71	
18 years old	Urban:	38	Urban:	201	Urban:	134	
To years old	Rural:	0	Rural:	54	Rural:	36	
19 years old	Urban:	24	Urban:	189	Urban:	386	
r9 years old	Rural:	16	Rural:	126	Rural:	71	
Includes valid G2s o only)	nly (except	for 16 yea	r olds in sha	ded cells, w	/hich consis	t of G1s	

4.4 Research Design

4.4.1 Survey response options

Participants were asked to complete the Young Driver Survey questionnaire through the online platform *Survey Monkey.* Participants gained access to the survey via a web-link provided in the invitation letter. This web-link was not publicly available, and was disclosed to participants in the survey invitation letters only. The invitation letters sent to participants were prepared in both French and English, as required by the Ministry. Participants were given the option of responding to the survey in their choice of either French or English. As well, participants were given the option of completing the

questionnaire over the phone with a survey consultant or through a mailed-paper version. Overall, 1,093 individuals who participated chose to complete the survey online; three individuals completed the survey over the phone; and six chose to use the paper version.

4.4.2 Incentives

In order to maximize response rates from the survey, a monetary incentive was used for recruitment. Upon completion of the questionnaire, participants were redirected to TIRF's website where they were given the opportunity to receive \$10 as thanks for their participation. Redirecting participants to TIRF's website after completion of the questionnaire ensured that personal information from participants and their responses could not be linked in any way, allowing for anonymity and confidentiality to be preserved. Participants who completed the questionnaire and submitted their contact information were subsequently sent a \$10 bill by mail.

4.4.3 Item Development

The Young Driver Survey questionnaire was developed and used to measure the characteristics and behaviours of young and novice drivers in Ontario. The development of the Young Driver Survey was guided by the research questions MTO established for this project. It involved several iterative stages, including extensive consultation and revision between TIRF's research team and MTO. Details of the development of the Young Driver Survey questionnaire are described below.

Questionnaire development began with the identification of primary domains (e.g., behaviours, skills, and risks) that accompany learning to drive, as well as key components of the GLS and BDE program (e.g., supervised driving, driving restrictions). These areas became the focus of item construction and development.

Item development explored a number of existing scales and questionnaires used to measure skills and behaviours of teen drivers. These existing scales included TIRF's own measures developed as part of previous young driver research projects (e.g., The New Driver questionnaire) as well as other relevant tools used in traffic safety research. Relevant existing items were adapted to fit the identified areas specific to this survey and research goals. Where gaps in items existed, TIRF's research team evaluated existing literature, as well as the BDE curriculum, to identify content appropriate to the Young Driver Survey.

An extensive pool of items was constructed and reviewed by TIRF's research team to evaluate which items held the highest estimated reliability and validity, and to eliminate those which were redundant or inappropriate. Careful consideration was given to select items that were assessed as being very specific, but which did not require increased response time to complete. This allowed for a relatively compact questionnaire to be constructed (15-20 minutes to complete online) without compromising content-rich results.

Items that were agreed upon were organized according to corresponding domains. These domain areas included: background information; learning to drive; G1 licence stage; vehicles; driving behaviours; parental influences; alternatives to driving; and, driving programs and resources. At this point, pilot testing was completed to further refine the existing items.

User acceptance testing and refinement. Pilot testing was conducted in several stages. Those testing the questionnaire were asked to review the items for response time, clarity of the content and wording of items, as well as to evaluate the overall feel and flow of the questionnaire. Items were added, removed, or revised based on this feedback.

Item types. Once finalized, the Young Driver Survey questionnaire consisted of three different item types: multiple choice (only one answer allowed or multiple answers allowed); open ended; and, rating scale items.

Questionnaire composition. The online format of the Young Driver Survey questionnaire allowed for automatic branching of items, reducing unnecessary or irrelevant questions to be given to participants when they were not applicable. In other words, the number of overall questions for each participant varied depending on how they responded to certain questionnaire items. Hard-copy versions (for both G1 and G2 drivers) of the Young Driver Survey were also developed (see Appendices B & C).

Branching of items occurred at several critical areas within the questionnaire so that participants answered question items that pertained to their group membership. These areas included, among others: licence type (G1 or G2); BDE status (whether or not the participant completed a Ministry-approved BDE course); and, time discount status (whether or not the participant had reduced the amount of time in the G1 licence stage). As well, the online survey format required that participants choose an answer option before progressing to the next item, reducing the likelihood of missing data points that would be expected otherwise.

Participants responded to a total of approximately 40-55 questions, depending on the branching of items within the questionnaire. The average response time to complete the survey online was between 15 and 20 minutes. The questionnaire was comprised of several sections related to key characteristics of the young driver population (refer to Appendices B & C for specific item content).

4.5 Data Collection

Over the time period from December 11, 2013 to March 9, 2014, three samples of Ontario households were contacted to invite teens to participate in the Young Driver Survey. An initial 6,000 letters were sent to participants in December 2013. Due to time and budgetary constraints of the project, only the first sample of invitation letters was followed up with reminder letters, approximately four weeks after distribution of the initial invitations.

Additional mail-outs of 1,008 and 2,000 invitation letters were sent in January and February of 2014, respectively.

Throughout the course of the study, response rates were monitored to determine the need for additional mail-outs. As well, the distribution of responses across the sampling design of the survey was monitored to ensure a balanced number of responses was received in each target group. At the conclusion of the survey period, a total of 1,102 young drivers chose to participate in the survey, with an overall response rate of approximately 12%.

4.6 Data Analysis

TIRF.

Of the 1,102 individuals who responded to the Young Driver Survey, a total of 995 were ultimately included in the analysis of the survey data. Reasons for exclusion from the final dataset were survey attrition (i.e., withdrawing from the survey early), invalid respondent categorization (e.g., respondents who were not included in the sampling design such as 17-19 year old G1 drivers), and any respondents who entered an unidentifiable or invalid postal code.

Data analysis was conducted using Stata, version 13. Univariate frequency distributions, bivariate cross-tabulations, and logistic regression analyses were used to analyze the results of the Young Driver Survey. These approaches were appropriate given the project objectives and structure of the research questions that were addressed as part of this study. Statistical significance was evaluated using calculations of 95% confidence intervals (CIs), as well as logistic regression modelling.

Summary statistics across the entire response set were analyzed. Careful analysis was undertaken to control for impossible values or response patterns which were contrary to the targeted design of this survey (e.g. 17-19 year old G1 licensed drivers). Data checks were initially completed by the TIRF research team and continued throughout the analysis process to ensure accuracy of results.

4.7 Weights

Design and post-stratification weights were used to most accurately analyze the survey data. Determination of the weights used during analysis involved several procedures (see Table 4-1 for specific values). First, the total population of G1 and G2 drivers in Ontario, obtained from the original sample from MTO, was distributed according to the stratification matrix of the sampling design for each of the 24 strata (see section 4.3 *Sample Selection*). Then, the probability of unit selection within each stratification cell in the survey design was calculated (Total sampled/Population total). The inverse of this probability was calculated. The result of these calculations represented the design weight of the survey.

Next, the post-stratification weight was calculated. Response totals of the survey were calculated for each of the 24 strata. Then, response rates were calculated for each strata (Total response/Total sampled). The inverse of the response rate for each cell of the stratification matrix was then calculated to obtain the resulting weight.

The design and post-stratification weights were multiplied to determine the overall weighting to be used in the survey analysis. Univariate, bivariate and logistic regression analyses were conducted using these weights, utilizing Stata's "svy" procedures for survey analysis.

Table 4-1	: Calcul	ation of S	Survey W	leights							
Stratum	Pop.	Sample	Sample	Sample	Total	Prob. of	Design	Total	Resp.	Post-Str	Final
	totals	1	2	3	sam.	selection	weight	Resp.	rate	weight	weight
1	4481	353	59	0	412	.0919438	10.87621	86	.2087	4.790698	52.104
2	1485	147	25	0	172	.1158249	8.633721	36	.2093	4.777778	41.25
3	3128	353	59	258	670	.2141944	4.668657	24	.0358	27.91667	130.33
4	749	147	25	0	172	.2296395	4.354651	32	.1860	5.375	23.406
5	16383	353	59	127	539	.0329	30.39518	39	.0723	13.82051	420.07
6	2861	147	25	62	234	.0817896	12.2265	15	.0641	15.6	190.73
7	30378	353	59	0	412	.0135624	73.73301	99	.2402	4.161616	306.84
8	8668	147	25	0	172	.0198431	50.39535	68	.3953	2.529412	127.47
9	10914	353	59	120	532	.0487447	20.51504	44	.0827	12.09091	248.04
10	2133	147	25	16	188	.0881388	11.34574	27	.1436	6.962963	79
11	3852	353	59	71	483	.1253894	7.975155	46	.0952	10.5	83.739
12	1361	147	25	71	243	.1785452	5.600823	18	.0740	13.5	75.611
13	28296	353	59	38	450	.0159033	62.88	63	.14	7.142857	449.14
14	7014	147	25	0	172	.0245224	40.77907	30	.1744	5.733333	233.8
15	23378	353	59	201	613	.0262212	38.13703	30	.0489	20.43333	779.26
16	4051	147	25	54	226	.0557887	17.92478	15	.0663	15.06667	270.06
17	8447	353	59	134	546	.0646383	15.4707	38	.0695	14.36842	222.28
18	2434	147	25	36	208	.085456	11.70192	18	.0865	11.55556	135.22
19	21212	353	59	24	436	.0205544	48.65138	64	.1467	6.8125	331.43
20	4435	147	25	16	188	.0423901	23.59043	25	.1329	7.52	177.4
21	25609	353	59	189	601	.0234683	42.61065	37	.0615	16.24324	692.13
22	3956	147	25	126	298	.0753286	13.27517	11	.0369	27.09091	359.63
23	10349	353	59	386	798	.0771089	12.96867	26	.0325	30.69231	398.03
24	2463	147	25	71	243	.0986602	10.1358	15	.0617	16.2	164.2

4.7.1 Univariate and Bivariate Distribution Analyses

Univariate and bivariate analyses were used to explore each variable in the data set separately, and across each of the target groups within the sampling design (i.e., BDE with time discount; BDE without time discount; and, non-BDE). Frequency and percentages of

responses for each evaluated variable were calculated where appropriate. Patterns of responses were individually analyzed to determine their significance levels.

Where bivariate distribution analyses were performed across subgroups of the young driver population the variable *classification* was used. The classification variable allowed for responses to be grouped according to where participants fell within the three targeted groups of young drivers (i.e., completed BDE with a time discount; completed BDE without a time discount; and drivers who did not complete BDE). Using these subgroups, researchers were able to determine if significant differences or similarities in skills, abilities, or perceptions were present between groups of young and novice drivers.

As mentioned above, certain variables were analyzed across groups determined by the BDE status of participants. In these cases, any significant variances in the distributions of variables across these groups were identified and subsequently confirmed using more advanced logistical models (see section 4.7.2 for further description). In all cases, significance was initially evaluated by 95% confidence intervals (CIs).

4.7.2 Logistic regression analysis

TIRF.

Logistic regression analysis was used to formally test the variance within the data between various driving skills, abilities, and behaviours among subgroups of young drivers. Depending on the specific research question, as well as results of the univariate and bivariate analyses, more sophisticated logistic regression analyses were conducted to evaluate statistical significance of results where appropriate. In these instances, a model was devised to examine the statistical estimates, as odds ratios, between a binary dependent variable (e.g., the frequency of a driving behaviour, or the rating of a specific skill) and an independent variable (e.g., BDE and time discount status, or demographic information). In this way, outcomes between the dependent variables could be interpreted as odds ratios.

The outcomes of each logistic regression model were evaluated for significance at the 5% level (p-value < 0.05). Additionally, the logistic regression analyses were conducted while controlling for specific external factors (e.g., gender and age) to further refine the risk estimates, in order to better detect the true effects of the key independent variables discussed. Demographic location (i.e., urban versus rural) was also considered as a control variable, but was found to be an insignificant factor for the vast majority of models. Thus, this variable was only used in logistic regression models where significant differences were identified in the resulting odds ratios when controlling for urban versus rural location. A summary of the significant findings can be found in the discussion section, *5.2 Summary and Discussion*.

5.0 RESULTS

5.1 Research Questions: Results

TIRF

In this section, the results of the study are described with respect to each research question listed in the project objectives. Any figures not displayed within the results section can be found in Appendix A.

5.1.1 What are the key driving characteristics of the young driver population in Ontario? Are these characteristics significantly different among drivers who completed a BDE program (with or without time discount) and drivers who did not complete a BDE program? If so, are these differences statistically significant?

Figure 5-1 shows the breakdown of individuals who participated in the Young Driver Survey, with respect to their categorization within the sampling design prior to applying design and stratification weights.

	BDE_TD	BDE_noTD	non_BDE	Totals
16-Urban	92	28	40	160
16-Rural	38	33	17	88
17-Urban	100	45	48	193
17-Rural	70	28	21	119
18-Urban	70	34	43	147
18-Rural	34	19	20	73
19-Urban	70	45	39	154
19-Rural	28	14	19	61
Totals	502	246	247	995

Figure 5-1: Distribution of responses by sampling design

Descriptive statistics of the weighted sample were evaluated to determine the overall percentages of young drivers in the population studied with respect to age, gender, demographic information (i.e., urban vs. rural), and school status (see Figures 5-2 to 5-5).

With respect to age, 16-year olds made up 12.76% [10.78,15.03] of the population, 17-year olds made up 25.13% [22.38,28.10] of the population, 18-year olds made up 32.28% [28.61,36.91] of the population, and 19-year olds comprised 29.83% [26.39,33.51] of the population. As well, male respondents comprised 46.24% [42.43,50.08] of total population compared to female respondents (53.76% [49.92,57.57]). No statistically significant differences were found between males and females with respect to whether or not they completed BDE or took a time discount.

With respect to the sampling design and overall population, there were more responses from urban participants (81.75% [79.39,83.90]) than rural participants (18.25% [16.10,20.61]). Interestingly, demographic differences were found within the young driver population with respect to the three target subgroups of young drivers (see Figure 5-7 in Appendix A). A greater percentage of rural drivers (51.92% [45.88,57.89]), compared to

urban drivers (45.25% [40.97,49.61]), completed BDE and took a time discount. Conversely, a greater percentage of urban drivers (33.81% [29.4,38.52]) completed BDE and did not take a time discount, compared to rural drivers (26.17% [20.85,32.29]). No significant differences were found among drivers who did not complete BDE with respect to demographic location.

Almost half of participants indicated that they were in high school (44.61% [42.47,46.78]), with an additional 49.84% [47.22,52.46] indicating that they were at the university or college level. Only 5.54% [4.07,7.51] of respondents indicated that they were not in school. Again, results showed significant variance within the three targeted subgroups of drivers in relation to their school status (see Figure 5-8 in Appendix A). Bivariate frequency analysis showed that a greater percentage of high school students (26.46% [24.82,28.16]), compared to university and college students (15.76% [14.17,17.48]) had not completed BDE.

Number (of strata	ι =	б		Number (of obs	3 =	995
Number (of PSUs	=	995		Populat	ion si	ize =	228037
					Design (df	=	989
age	- years	perce	ntages	lb	ub			
	16		12.76	10.78	15.03			
	17		25.13	22.38	28.1			
	18		32.28	28.61	36.19			
	19		29.83	26.39	33.51			
	Total		100					
Key:	percenta	iges =	cell perc	entages				
	lb	=	lower 95%	confidence	bounds for	cell	percentages	5
	ub	=	upper 95%	confidence	bounds for	cell	percentages	S

Figure 5-2: Distribution of responses by age

TIRF

Figure 5-3: Distribution of responses by gender

Number	of	strata	=	24			N	umb	er (of ob:	70	=		995	
Number	of	PSUs	=	995			P	opu	lat	ion s:	ize	=	2	228037	
							D	esi	gn d	lf		=		971	
	are	vou:	perce	ntages		lb			ub						
		male		46.24		42.43		50	.08						
	f	emale		53.76		49.92		57	.57						
		Total		100											
Veri															
Key:	pe	ercentag	jes =	cell be	rc	entages									
	11	C	=	lower 9	5%	confidence	boun	ds	for	cell	per	centa	ages		
	uk	c	=	upper 9	5%	confidence	boun	ds	for	cell	per	centa	ages		

Number of str	ata =	12		Number	of ob:	в =		995
Number of PSU	s =	995		Populat	ion s	lze =	228	3037
				Design	df	=		983
	<u>.</u>							
postalco	de perce	entages	lb	ub				
rur	al	18.25	16.1	20.61				
urb	an	81.75	79.39	83.9				
Tot	al	100						
Key: perce	ntages =	cell per	centages					
lb	=	lower 95	& confidence	bounds for	cell	percenta	ges	
ub	=	upper 95	& confidence	bounds for	cell	percenta	ges	

Figure 5-4: Distribution of responses by demographics

Figure 5-5: Distribution of responses by school year

Number of strate	_	2.4		Numbor	of oh		0.0 E
Number of Strata	-	24		number	OI OD:	5 –	990
Number of PSUs	=	995		Popula	tion s	ize =	228037
				Design	df	=	971
Current					-		
Education Level	percenta	ages	lb	u	b		
High School	4	4.61	42.47	46.7	8		
University	4	9.84	47.22	52.4	б		
Not In School	5	.544	4.071	7.50	9		
Total		100			_		
Key: percentag	les = ce	ell perc	entages				
lb	= 10	ower 95%	confidence	bounds for	r cell	percentage	s
ub	= uj	oper 95%	confidence	bounds for	r cell	percentage	s

Univariate analysis techniques were used to determine the distribution of young drivers who fell within each of the three targeted subgroups of the study, (i.e., drivers who completed BDE and took a time discount, drivers who completed BDE and did not take a time discount, and drivers who had not completed BDE).

Drivers who completed BDE and took a time discount comprised 46.47% [42.81,50.17] of the weighted sample (i.e., representative with respect to the larger population). Those who completed BDE without taking a time discount made up 32.41% [28.66,36.41] of the population. Participants who did not complete BDE made up the final 21.11% [18.56,23.92] of drivers (see Figure 5-6).

Number of strata	= 8		Number of c	bs =	995
Number of PSUs	= 995		Population	size =	228037
			Design df	=	987
classification	percentages	dl	ub		
BDE w/ TD	46.47	42.81	50.17		
BDE w/o TD	32.41	28.66	36.41		
non-BDE	21.11	18.56	23.92		
Total	100				
Key: percentages = cell percentages					
lb	= lower 95%	confidence	bounds for cel	l percentage	5
ub	= upper 95%	confidence	bounds for cel	l percentage	5

Figure 5-6: Distribution of responses by targeted subgroups

5.1.2 What is the amount of driving among young drivers?

The following subsection analyzes the amount of driving, including driving for specific purposes, that young drivers experience during different stages of the graduated licensing process. It also examines the amount of driving among subgroups of young drivers defined in terms whether they completed BDE or not, as well as whether or not they decided to take a time discount.

Within the questionnaire, participants were asked several questions related to the frequency and amount of driving they accumulated during G1 and G2 licence stages. Such questions asked whether or not they had driven prior to enrolling in BDE; how many days per month they drove; how many kilometers (km) they drove each month; and, how often they drove for specific purposes (e.g., to get to and from school).

Univariate and bivariate analyses were performed to gauge the frequency and amount of driving, as well as the percentage of drivers who rated the frequency which they drove for each separate driving purpose in the average month as *Never, Once, Sometimes, Often, or Very often.* Additionally, logistic regression analyses were conducted to discern whether any differences among the three subgroups of drivers were present. The logistic regression measured any significant differences between those drivers who drove for each specific purpose "often" (i.e., categories of *Often or Very often*) versus those who drove for each specific purpose "not often" (i.e., categories of *Never, Once, or Sometimes*).

Driving prior to BDE enrollment. Results of a univariate analysis revealed that the majority of young drivers, approximately 77.47% [73.49, 81], who had completed BDE, reported that they drove prior to enrolling in the BDE program (see Figure 5-9 in Appendix A).

Days driven. Participants were asked to indicate the amount of driving they experienced in an average month. A univariate analysis was conducted to measure the amount of driving that G1 drivers accumulated in an average month, as well as the distribution of

driving frequency across subgroups (see Figure 5-10 in Appendix A). It should be noted that, as per the sampling design of this study, G1 drivers in this analysis consist of 16-year olds only. The majority of G1 drivers (74.59% [63.11,83.43]) drove less than eight days per month. Approximately 7% [3.01,16.92] of G1 drivers reported driving between 24 and 31 days per month on average.

Figure 5-11 shows the amount of driving that G2 drivers accumulated in an average month, as well as the distribution of driving frequency across subgroups. As opposed to G1 drivers, the number of days driven per month is more equally distributed among G2 drivers, with 33.42% [29.64,37.42] of G2s driving 0-7 days per month; 20.88% [17.72,42.42] driving 8-15 days per month; 20.33% [17.25,23.79] driving 16-23 days per month; and, 25.38% [22.07,28.99] driving 24-31 days per month.

umber of strata	= 20		Number of obs	= 853	
umber of PSUs	= 853		Population siz	e = 199090.43	
			Design df	= 833	
	On	how many days d	lo you drive in	the average month?	
classification	0-7 days	8-15 days	16-23 days	24-31 days	Total
BDE w/ TD	27.95	21.84	21.16	29.04	100
	[23.52,32.87]	[17.88,26.4]	[17.27,25.67]	[24.59,33.93]	
BDE w/o TD	39.88	21.24	18.58	20.3	100
	[31.93,48.39]	[15.14,28.98]	[12.8,26.17]	[14.46,27.75]	
non-BDE	37.79	16.43	21.53	24.25	100
	[30.26,45.97]	[11.26,23.35]	[15.99,28.35]	[17.97,31.86]	
Total	33.42	20.88	20.33	25.38	100
	[29.64,37.42]	[17.73,24.42]	[17.25,23.79]	[22.07,28.99]	
	ntagag				<u></u>
[95% conf	idence interval	s for row perce	ntages]		
Pearson:					
Uncorrected	chi2(6)	= 15.6571			
Design-based	F(5.32, 4431.0	2)= 1.9349	P = 0.0806		

Figure 5-11: How many days do G2 drivers drive in an average month?

Preliminary bivariate analysis indicated that there may be some differences among subgroups of G2 drivers with respect to the number of days driven in an average month. However, after further controlling for gender and age differences using logistic regression analysis, it was determined that these differences were not statistically significant (see Figure 5-12 in Appendix A).

Kilometers driven. Figures 5-13 and 5-15 (see Appendix A) show the number of kilometers reported by G1 and G2 drivers in an average month. A bivariate analysis determined the number of kilometers driven by G1 drivers in an average month, as well as the distribution across subgroups. The majority of G1 drivers (75.31% [65.16,83.25]) drove

TIRF.

less than 101 kilometers per month. Additionally, about 22.60% [15.18,32.25] of G1 drivers drove between 101-500 kilometers per month.

Within subgroups of drivers, the majority of G1 drivers who did not complete BDE (80.23% [67.92,88.61]) drove less than 101 km per month. This is noticeably higher than the 48.36% [32.68,64.38] of drivers who completed BDE without taking a time discount. Logistic regression analysis was used to confirm the significance of this finding (see Figure 5-14 in Appendix A). The analysis evaluated the significance between drivers who indicated that they drove for more than 100 kilometers per month, compared to those who drove for less than 101 kilometers per month, while controlling for gender. It should be noted that age was not used as a control variable in this model due to the fact that only 16 year old G1 licensed drivers who did not complete BDE and those G1 drivers who completed BDE but did not take a time discount. In other words, non-BDE drivers have an approximate 79% ((1-0.21)*100) decrease in the odds that they will drive for more than 100 kilometers per month, compared to G1 drivers who completed BDE without taking a time discount.

Approximately 41.60% [37.61,45.71] of G2 drivers reported that they drove for less than 101 kilometers in an average month. A higher percentage of G2 drivers (58.39%) than G1 drivers (24.70%) indicated that they drove more than 100 kilometers per month. The results of a logistic regression analysis (see Figure 5-16) confirmed the significance of this finding with an odds ratio of 4.28 (p<0.01) between G1 and G2 drivers when controlling for gender. This means that G2 drivers had a 328% increase in the odds of driving for more than 100 kilometers in the average month compared to G1 drivers. Furthermore, as opposed to differences found among G1 drivers, no statistically significant differences were found between subgroups of G2 drivers with respect to whether or not they drove for more than 100 kilometers per month.

Figure 5-16: Logistic regression

Number of stra	ata =	24		Number of	obs =	966
Number of PSU:	s =	966		Populatior	n size =	221729.76
				Design df	=	942
				F(2,	941) =	15.99
				Prob > F	=	0.0000
		Linearized				
km drive	Odds Ratio	Std. Err	÷	P> t	[95% Conf.	Intervall
	ouus nuoro	504. 222.		1. 101	[)) V OOM2 .	incervar,
licencetype						
al licence	1 000	(hage)				
gi licence	1 292	1 112	5 596	0 000	2 571	7 122
gz ricence	4.202	1.113	5.590	0.000	2.571	/.132
gender						
male	1.000	(base)				
female	0.942	0.155	-0.365	0.715	0.682	1.301
_cons	0.339	0.091	-4.031	0.000	0.200	0.574
	1					

Driving to school. Participants were also asked to estimate the frequency that they drove for specific purposes (e.g., to school, work, social activities) each month. They were asked to give the frequency on a scale from Never to Very often. Overall, 41.05% [37.1,45.11] of young drivers said that they never drove to get to and from school on a monthly basis; 7.7% [5.84,10.10] said they drove once per month; 11.54% [9.227,14.35] said they sometimes drove to school; 12.11% [9.65,15.11] said they often drove to school; and, 27.60% [24.16,31.32] said they drive to school very often in the average month (see Figure 5-17).

The percentage of drivers, who completed BDE and took a time discount, and that never drove to or from school is much smaller than those who did not complete BDE (33.08% [28.21,38.34] vs 53.38% [45.58,61.02]). A logistic regression analysis (see Figure 5-18 in Appendix A) was conducted to determine subgroup differences between drivers who reported never driving to or from school, compared to those who drove to or from school at least once per month. Results showed an odds ratio of 0.60 (p=0.01) between drivers who completed BDE and took a time discount and those who did not complete BDE. This means that drivers who did not complete BDE are 40% ((1-0.60)*100) less likely to drive to or from school at least once per month, compared to BDE drivers who take a time discount. In this instance, it was observed that drivers who completed BDE and took a time discount drove significantly more often to school compared to drivers who did not complete BDE.

Number of st	rata = 24		Number of obs	= 861
Number of PS	SUs = 861		Population size	= 189318.92
			Design di	= 837
How often				
have you				
driven to				
get				
to/from				
school,		classif:	ication	
monthly?	BDE w/ TD	BDE w/o TD	non-BDE	Total
Never	33.08	45.71	53.38	41.05
	[28.21,38.34]	[37.17,54.51]	[45.58,61.02]	[37.1,45.11]
Once	8.602	6.921	6.704	7.7
	[6.05,12.09]	[3.76,12.4]	[3.621,12.08]	[5.836,10.1]
Sometimes	13.67	9.179	10.04	11.54
	[10.34,17.86]	[5.386,15.22]	[6.149,15.97]	[9.227,14.35]
Often	12.57	13.5	8.786	12.11
	[9.374,16.65]	[8.537,20.69]	[5.334,14.14]	[9.647,15.11]
Very Often	32.08	24.69	21.09	27.6
	[27.27,37.31]	[18.04,32.82]	[15.81,27.57]	[24.16,31.32]
Total	100	100	100	100
Key: colu	umn percentages	als for column pe	ercentagesl	
[550		arb for cordinir p	er oemeageb ;	
Pearson:				
Uncorrec	ted chi2(8)	= 26.9502		
Design-b	ased F(7.56, 6330	.51)= 2.3291	P = 0.0193	

Figure 5-17: How often do young drivers drive to/from school, monthly?

Driving to work. Overall, 43.97% [39.98,48.04] of young drivers said that they never drove to get to and from work on a monthly basis; 4.25% [2.84,6.32] said they drove once per month; 11.14% [8.81, 14.00] said they sometimes drove to or from work; 15.87% [12.97,19.28] said they often drove to work; and, 24.77% [21.5,28.35] said they drove to or from work very often in the average month (see Figure 5-19 in Appendix A).

A bivariate distribution analysis shows that drivers who have completed BDE and took a time discount never drove to or from work significantly less than those who did not complete BDE (40.22% [34.99,45.68] vs 56.36% [48.90,63.55]). Results of a logistic regression analysis (see Figure 5-20 in Appendix A), evaluated the odds ratio of driving to work at least once a month compared to those who never drove to work, confirmed these findings, with an odds ratio of 0.66 (p=0.04) between drivers who completed BDE and took a time discount and non-BDE drivers. In other words, drivers who did not complete BDE had 34% ((1-0.66)*100) decreased odds that they will drive to work at least once in the average month compared to drivers who completed BDE and took a time discount. No significance was found when comparing other subgroups of drivers with respect to the frequency that they drove to or from work in the average month. However, results did reveal that females were significantly more likely to report driving to work at least one time per month compared to males, with an odds ratio of 1.62 (p=0.01) for female drivers.

Driving as part of a job. Results show that 82.91% [79.67,85.72] of young drivers never drove as part of their job (see Figure 5-21 in Appendix A). Around 3.18% [2.04,4.94] said they drove as part of their job once per month; 3.44% [2.24,5.24] drove as part of their job sometimes; 5.16% [3.64,7.27] drove often; and, 5.31% [3.78,7.40] drove as part of their job very often.

Bivariate analysis showed that 79.65% [74.88,83.71] of drivers who completed BDE and took a time discount never drove as part of their job in an average month. A higher percentage of drivers, 87.14% [80.13,91.92] of those who completed BDE and did not take a time discount and 84.24% [78.04,88.94] of those who did not complete BDE, indicated that they never drove as part of their job in the average month. However, a logistic regression analysis, controlling for gender, age, and demographic location (i.e., urban versus rural) variables, suggested that these differences were not statistically significant when taking other factors into account, with respect to whether or not they drove as part of their job at least once per month (see Figure 5-22 in Appendix A). Demographic location was used as a control variable in this particular model due to the fact that it significantly influenced the odds ratio, in this case suggesting that the differences among subgroups were not statistically significant.

Driving to recreational or social activities. Overall, 20.84% [17.88,24.14] of young drivers said that they never drove to get to and from recreational or social activities on a monthly basis; 16.75% [13.79,20.21] said they drove once per month; 26.63% [23.25,30.31] said that they sometimes drove to or from recreational or social activities; 23.88% [20.47,27.66] said they often drove to recreational or social activities; and, 11.90% [9.42,14.92] said they drove to or from recreational or social activities very often in the average month (see Figure 5-23).

Similar differences were found between subgroups of drivers, as in previous categories of driving purposes. A smaller percentage of drivers who completed BDE and took a time discount (17.01% [13.31,21.49]) and drivers who completed BDE but did not take a time discount (19.43 [13.93,26.42]) never drove to or from recreational or social activities compared to those who did not complete BDE (32.56% [25.91,40.00]). However, a logistic regression analysis, which controlled for differences in age and gender variables, suggested that these differences among subgroups of drivers were not statistically significant (see Figure 5-24 in Appendix A).

Figure 5-23: How often do young drivers drive to/from recreational or social activities, monthly?

Number of strata	= 24	N	umber of obs	= 861
Number of PSUs	= 861	P	opulation size	= 189318.92
		D	esign df	= 837
How often have				
you driven to				
get to/from				
recreational or				
social				
activities,		classif	ication	
mont	BDE w/ TD	BDE w/o TD	non-BDE	Total
Never	17.01	19.43	32.56	20.84
	[13.31,21.49]	[13.93,26.42]	[25.91,40]	[17.88,24.14]
Once	14.84	21.7	13.63	16.75
	[11.32,19.21]	[15.08,30.19]	[9.348,19.45]	[13.79,20.21]
Sometimes	31.24	21.66	23.13	26.63
	[26.48,36.42]	[15.38,29.6]	[17.44,30]	[23.25,30.31]
Often	26.93	22.09	19.17	23.88
	[22.28,32.14]	[15.47,30.53]	[13.68,26.2]	[20.47,27.66]
Very Often	9.989	15.12	11.5	11.9
	[7.219,13.67]	[9.621,22.97]	[7.773,16.69]	[9.421,14.92]
Total	100	100	100	100
Key: column pe [95% conf	rcentages idence intervals	for column perc	entages]	
Pearson:				
Uncorrected	chi2(8)	= 34.1743		
Design-based	F(7.38, 6176.20)	= 2.9344	P = 0.0038	

Driving to practice driving. Results of the univariate analysis showed that young drivers do practice driving fairly often overall. Approximately one-quarter, or 24.33% [20.95,28.07] of drivers said they drive to practice driving very often in the average month; 29.19% [25.67,32.99] said they drove to practice often; 27.79% [24.25,31.64] said they practiced driving sometimes; 8.99% [6.75,11.88] said they practiced driving once per month; and, 9.70% [7.61,12.28] said that they never drove to practice their driving in the average month (see Figure 5-25 in Appendix A).

Significant differences were found among subgroups of young drivers. Significantly fewer drivers who completed BDE and took a time discount (5.9% [3.71,9.25]) said that they never drove to practice driving, compared to 21.25% [15.55,28.34] of drivers who did not complete BDE. Results of a logistic regression analysis (see Figure 5-26 in Appendix A), controlling for gender differences, showed a significant odds ratio of 0.42 (p=0.01) between BDE drivers who took a time discount and drivers who did not complete BDE. This means that, compared to BDE drivers who took a time discount, non-BDE drivers had a 58% ((1-0.42)*100) decrease in the odds of driving to practice at least once per month.

Although a smaller percentage of drivers who completed BDE without taking a time discount (8.35% [4.78,14.20]) reported never driving to practice in the average month compared to drivers who did not complete BDE, the logistic regression analysis determined that these differences were not statistically significant. These findings suggest that drivers who did not complete BDE do not practice driving as often as drivers who completed BDE and took a time discount.

Driving just to go for a drive. Results of the univariate analysis indicated that, for the most part, young drivers did not often drive just to go for a drive (see Figure 5-27 in Appendix A). Just 3.40% [2.18,5.25] of drivers said they drove just to go for a drive very often in the average month; 5.60% [4.04,7.73] said they went for a drive often; 12.37% [9.93,15.31] said they drove just to go for a drive sometimes; 13.52% [11.03,16.47] said they did this once per month; and, 65.11% [61.45,68.60] said they never drove just to go for a drive in the average month.

The bivariate analysis revealed differences among subgroups of young drivers. A much smaller percentage of drivers who did not complete BDE (43.40% [37.69,49.29]) said that they never drove just to go for a drive in the average month, compared to drivers who completed BDE and took a time discount (72.85% [67.93,77.27]). Similarly, 66.69% [58.30,74.13] of drivers who completed BDE without taking a time discount said that they never drove simply to go for a drive, more than those who did not complete BDE. Logistic regression analysis, controlling for gender and age factors, was used to confirm the significance of these results (see Figure 5-28 in Appendix A). A significant odds ratio of 2.38 (p<0.01) was found between drivers who did not complete BDE and those who completed BDE and took a time discount. This means that drivers who did not complete BDE had a 138% ((2.38-1)*100) increase in the odds of driving just to go for a drive at least once per month compared to BDE drivers who took a time discount. Results also revealed that, when controlling for age and gender, the differences between drivers who complete BDE without taking a time discount and those who did not complete BDE were not statistically significant.

5.1.3 How often does the driver have access to a vehicle?

This subsection describes how often young drivers had access to a vehicle. As well, it analyzes distributions of these percentages across the three targeted subgroups of drivers.

Figure 5-29 contains the distribution of young drivers who had unlimited access to a vehicle across subgroups. Results indicated that about an equal number of young drivers said they had unlimited use of a motor vehicle (47.00% [43.21,50.83]) compared to those that said that they did not have unlimited use (53.00% [49.17,56.79]).

Number of strata	= 24		Number of obs	= 980
Number of PSUs	= 980		Population size	= 224603.65
			Design df	= 956
	Do you have	e unlimited use	of vehicle?	
classification	No	Yes	Total	
			100	
BDE W/ ID	4/	53	100	
	[41.89,52.16]	[4/.84,58.11]		
BDE W/O TD	58.27	41.73	100	
222 1, 0 12	[50.16.65.95]	[34.05.49.84]	100	
non-BDE	58.19	41.81	100	
	[50.93,65.12]	[34.88,49.07]		
Total	53	47	100	
	[49.17,56.79]	[43.21,50.83]		
Key: row perce	entages			
[95% conf	idence interval	s for row perce	entages]	
Pearson:				
Uncorrected	chi2(2)	= 12.3702		
Design-based	F(1.91, 1822.6	54)= 4.1019	P = 0.0182	

Figure 5-29: Do young drivers have unlimited access to a vehicle?

More drivers who completed BDE and took a time discount were found to have unlimited access to a vehicle (53% [47.84,58.11]), compared to those drivers who completed BDE without taking a time discount (41.73% [34.05,49.84]) and those who did not complete BDE (41.81% [34.88,49.07]). Logistic regression analysis was undertaken to further confirm the significance of this finding, while controlling for gender and age differences (see Figure 5-30 in Appendix A). Speaking in terms of percentages, for a driver who had completed BDE but did not take a time discount, the odds of having unlimited access to a vehicle is 40% ((1-0.60)*100) less than a driver who had taken a time discount. Similarly, the likelihood of drivers who did not completed BDE to have unlimited access to a vehicle is 32% ((1-0.68)*100) less than drivers who completed BDE and took a time discount.

5.1.4 How much responsibility do young drivers have for the vehicles they drive?

Participants were asked questions about the amount of responsibility they had for the vehicles they drive. Participants were asked to identify the individual who owned the vehicle that they operated most often. The response options included: you; your parents/guardians; other family members; a friend; or, other.

Univariate analysis results showed the distribution of ownership of the vehicles that young drivers operated (see Figure 5-31). In the majority of cases (86.41% [83.69,88.73), the parents/guardians of young drivers own the vehicle that they operated. Approximately 9.31% [7.52,11.48] of young drivers said they owned their own vehicles.

Number of strata =	24	Numbe	r of obs =	978
Number of PSUs =	978	Popul	ation size =	224283.38
		Desig	in di =	954
Who owns the vehicle		classif	ication	
you drive?	BDE w/ TD	BDE w/o TD	non-BDE	Total
you	11.86	6.637	7.772	9.313
	[9.018,15.44]	[3.889,11.1]	[5.289,11.28]	[7.524,11.48]
your parents/guardian	86.26	88	84.32	86.41
	[82.46,89.34]	[81.91,92.24]	[78.78,88.62]	[83.69,88.73]
other family member	1.208	3.701	4.772	2.766
	[.5081,2.844]	[1.458,9.079]	[2.597,8.609]	[1.698,4.476]
friend	0	1.347	2.745	1.016
		[.2965,5.9]	[.9568,7.62]	[.4216,2.429]
other	.677	.3102	.3912	.4985
	[.1659,2.719]	[.07959,1.201	[.09144,1.657	[.1907,1.297]
Total	100	100	100	100
Key: column percenta	ages			
[95% confidence	e intervals for	column percenta	.ges]	
Pearson:				
Uncorrected chi2	(8) =	25.9935		
Design-based F(6.	52, 6217.87)=	2.4293 P =	0.0203	

Figure 5-31: Who owns the vehicles that young drivers operate?

Interestingly, a greater percentage of young drivers who completed BDE and took a time discount (11.86% [9.02,15.44]) said they owned their own vehicles, compared to those drivers who completed BDE and did not take a time discount (6.64% [3.89,11.10]) and those who did not complete BDE (7.77% [5.29,11.28]). A logistic regression analysis was conducted to further analyze these results (see Figure 5-32 in Appendix A). The analysis, which also controlled for gender, age, and demographic location (i.e., urban versus rural) factors, examined the difference among the three targeted subgroups of young drivers with respect to whether they owned the vehicle they drove or someone else did. Demographic location was used as a control variable in this particular model due to the fact that it significantly influenced the resulting odds ratios, in this case suggesting that the differences among subgroups were actually not statistically significant. Results indicated that the differences with respect to vehicle ownership seen in the bivariate analysis were not statistically significant, suggesting other factors were likely more influential.

A bivariate analysis was also conducted to determine whether or not young drivers who owned their own vehicles also reported having unlimited use of a motor vehicle compared to drivers who did not own their own vehicle. A much larger percentage of drivers who owned their own vehicles (93.19% [84.89,97.09]) reported having unlimited access to a vehicle compared to the 42.27% [38.29,46.36] of drivers who did not own their own vehicle (see Figure 5-33 in Appendix A). This suggests that those drivers who owned their

own vehicle did not have restrictions on the amount of access to a vehicle they were allowed, unlike the majority of those individuals who drove cars owned by other people, such as their parents or family members. Ultimately, this implies that vehicle ownership was associated with decreased restriction and monitoring of young drivers while they were learning to drive.

5.1.5 What type of vehicles do younger drivers operate most often?

This subsection describes the most common types and number of vehicles that young drivers operate. Participants were asked to select the single type of vehicle which they drove most often, as well as how many vehicles they had access to drive. The choices were as follows: Car; Minivan/Family van; Sports utility vehicle (SUV); Pick-up truck; Motorcycle; or, Other.

The univariate analysis showed that cars were the most common type of vehicle used, driven by approximately 56.64% [52.78,60.42] of young drivers. Sport utility vehicles (SUVs) and vans were also vehicle types most often driven (19.61% [16.72,22.86] and 15.38% [12.77,18.41] respectively) by some young drivers (see Figure 5-34 in Appendix A).

Almost half of young drivers (46.87% [43.05,50.73]) said that they had access to two vehicles (see Figure 5-35 in Appendix A). Very few drivers, approximately 2.48% [1.42,4.32], did not have access to a vehicle; 28.11% [24.78,31.7] had access to one vehicle; 17.94% [15.21,21.05] had access to three vehicles; and, 4.59% [3.34,6.27] had access to four or more vehicles to drive.

No significant differences were found among subgroups of young drivers with respect to the type of vehicle that they drove. However, results of a logistic regression analysis revealed differences among subgroups of young drivers with respect to the number of cars they had access to (see Figure 5-36 in Appendix A). An odds ratio of 0.59 (p=0.01) was found for drivers who did not complete BDE compared to those who completed BDE and took a time discount with respect to whether or not they had access to at least three vehicles. This means that drivers who did not complete BDE had a 41% ((1-0.59)*100) decrease in the odds that they would have access to at least 3 cars, compared to those who completed BDE and took a time discount. These results imply, that in general, drivers who completed BDE and took a time discount had access to a greater number of vehicles.

5.1.6 During the G1 licence period, who served most often as the experienced driver accompanying the young driver?

In this subsection, we identify the individual(s) who most often served as supervising drivers to young drivers during the G1 licence period. Participants were asked to indicate, from a specified list, the individual who served as the supervising driver most often during their G1 licence stage.

Figure 5-37 shows the results of the univariate analysis. Parents (i.e., mothers or fathers) were found to be the primary supervising driver to young drivers most often during the G1

stage (mothers and fathers serving as the primary supervising driver for 38.85% [35.22,42.6] and 44.76% [40.96,48.62] of individuals, respectively). Additionally, driving instructors were cited as the primary supervising driver to 9.57% [7.46,12.19] of young drivers during the G1 licence stage.

Number of strata =	24		Number of obs	=	9
Number of PSUs =	983		Population size	e = 2252'	75.
			Design df	=	9
Who is/was the supervisin	ng				
driver most often during	G1?	percentages	lb	ub	
other (please s	specify)	.9351	.4074	2.131	
	mother	38.85	35.22	42.6	
	father	44.76	40.96	48.62	
older	sibling	.997	.4587	2.153	
other 1	relative	1.683	.8887	3.166	
	friend	.9604	.3862	2.368	
driving ins	structor	9.568	7.463	12.19	
drov	<i>v</i> e alone	.4368	.1462	1.298	
did not drive during this	s period	1.814	.9831	3.324	
	Total	100			
Key: percentages = o	cell perce	entages			
1b = 1	Lower 95%	confidence bo	ounds for cell pe	ercentages	
ub = 1	upper 95%	confidence bo	ounds for cell pe	ercentages	

Figure 5-37: Who served most often as the supervising driver during G1 stage?

5.1.7 How many combined hours did the driver spend under supervision (i.e., parents/guardians, other adults, driving instructor, etc.)?

This subsection examines the amount of time that young drivers spent under supervision while learning to drive. The number of hours of supervision per month, the amount of additional G2 supervision, as well as the amount of unsupervised driving during the G1 licence stage is examined.

Monthly supervised driving practice. Results of the univariate analysis showed that the majority of young drivers received between 0 and 20 hours of supervised driving practice per month during the G1 licence stage (see Figure 5-38 in Appendix A). Approximately 41.01% [37.3,44.83] of young drivers received between 0-10 hours of supervision per month; 32.59% [29.07,36.32] received 11-20 hours; 12.98% [10.60,15.82] received 21-30 hours; 6.65% [5.00,8.80] received 31-40 hours; 3.83% [2.68,5.46] received 41-50 hours; and, 2.93% [1.93,4.43] received over 51 hours of monthly supervised driving during their G1 licence stage.

A logistic regression analysis was conducted to evaluate the differences among subgroups of young drivers between those drivers who indicate that they received either 0-10 hours, or more than 10 hours of supervision per month during their G1 licence stage (see Figure 5-39 in Appendix A). Results of this analysis revealed an odds ratio of 0.65 (p=0.02)

between drivers who completed BDE and took a time discount and those who did not complete BDE. In other words, young drivers who did not complete BDE had a 35% ((1-0.65)*100) decrease in the likelihood of getting more than 10 hours of supervised driving practice per month compared to drivers who completed BDE with a time discount. No significant differences were found, in this case, between these two subgroups and drivers who completed BDE without taking a time discount. As indicated in the background section of this report, supervised driving practice is an essential component of GDL, and these results indicate that drivers who completed BDE and took a time discount were more likely to engage in supervised driving practice compared to the other two targeted subgroups.

Additional supervised driving practice. Results showed that almost half of young drivers received additional supervised driving practice once they obtained their G2 licence (see Figure 5-40 in Appendix A). About 45.31% [41.36,49.31] of G2 drivers indicated that they received this additional practice.

Unsupervised driving. The majority of drivers (77.16% [73.73,80.27]) said that they never drove without a supervising driver during the G1 licence stage. This is consistent with Ontario's graduated licensing law which requires all G1 drivers to be accompanied by a qualified supervising driver (Ministry of Transportation, Ontario 2014). However, almost one in four drivers (around 23%) admitted to driving without a supervising driver during the G1 licence stage. In this regard, univariate analysis results (see Figure 5-41 in Appendix A) revealed that 4.41% [2.99,6.47] of young drivers said that they drove unsupervised once per month during their G1 licence stage; 7.48% [5.68,9.80] did this once per week; 7.83% [6.01,10.15] said drove unsupervised several times per week; and, 3.11% [2.04,4.71] drove unsupervised during the G1 licence stage almost every day during the average month. No significant differences were found between subgroups of young drivers in this instance.

Results from drivers who indicated that they drove on 400-series highways during their G1 licence period and from those who indicated that they drove unsupervised during their G1 licence period were compared to determine whether or not the same drivers were likely to engage in these two risky behaviours. Using logistic regression analysis (see Figure 5-42 in Appendix A), a significant odds ratio of 2.23 (p<0.01) was found, indicating that drivers who drove on 400-series highways during their G1 licence period were 123% ((2.23-1)*100) more likely to also drive without a supervising driver at least once per month during their G1 licence period compared to those who did not engage in these behaviours. This suggests that drivers who ignored the restrictions of the G1 driver licence period and drove on 400-series highways also ignored the restrictions requiring all G1 drivers to have a qualified supervisor in the vehicle when driving.

5.1.8 Did the driver's parents/guardians establish any rules for driving a vehicle?

This subsection analyzes the influence of parents/guardians in establishing rules for younger drivers while they are driving. The analysis differentiates between the rules applying to G1 and G2 drivers, as well as across subgroups of drivers.

The questionnaire asked participants to indicate whether or not their parents restricted the hours that they had access to a vehicle; whether or not their parents enforced a curfew when they were driving; and, how many teenagers their parents allowed them to have in the vehicle while they were driving during the G1 and G2 licence periods.

Approximately 51.61% [39.72,63.33] of G1 drivers indicated that their parents/guardians restricted the number of hours they had access to a vehicle, compared to 38.36% [34.47,42.4] of G2 drivers (see Figures 5-43 & 5-44 in Appendix A). Results did not show significant differences within subgroups of drivers.

Slightly more than half of G1 and G2 drivers said they had a curfew (i.e., a set time by which they must be home), enforced by their parents, when they were driving (see Figures 5-45 & 5-46 in Appendix A). A slightly larger percentage of G1 drivers (51.04% [39.08,62.89]) said they had a curfew when driving compared to G2 drivers (44.99% [40.95,49.11]). Results of a logistic regression analysis did not show significant differences within subgroups of drivers.

The number of teen passengers allowed in the vehicle of young G1 and G2 drivers by parents/guardians was evaluated using a univariate analysis (see Figures 5-47 & 5-48 in Appendix A). More than one-quarter (27.87% [24.46,31.55]) of G1 drivers were not allowed to have any teenage passengers in the vehicle when they were driving, compared to 2.58% [1.59,4.17] of G2 drivers whose parents/guardians enforced this same restriction. Conversely, only 1.58% [0.93,2.67] of G1 drivers were allowed four or more teenage passengers in the vehicle while driving, compared to 26.38% [22.95,30.11] of G2 drivers. It should also be noted that 40.44% [36.43,44.59] of G2 drivers indicated that they did not know or never asked their parents about the number of teen passengers they were allowed to have in the vehicle when driving. This suggests that many parents did not speak to G2 licenced drivers about the number of teenage passengers they were allowed to have in the vehicle. Results of a logistic regression analysis between drivers who were or were not allowed to have any teens in the vehicle during G1 and G2 licence periods did not reveal any differences among the three targeted subgroups of young drivers. This result suggests that the BDE program may have been a missed opportunity to promote parental involvement and awareness of the risks associated with teenage passengers during the time period of learning how to drive. In other words, the BDE program could be enhanced to better serve as a means to provide parents and new drivers with important information about the risks associated with teenage passengers.

5.1.9 How often do young drivers' parents/guardians or other family members talk to them about traffic safety/rules?

Participants were asked several questions related to conversations that they had with their parents/guardians about driving. Specifically, participants were asked how often they talked about traffic safety and rules; and whether or not they had talked about drinking and driving, texting and driving, and distracted driving.

TIRF.

The univariate analysis results indicated that parents do talk to young drivers about traffic safety and rules of the road often (see Figure 5-49 in Appendix A). Overall, approximately 70.46% [66.79,73.89] of young drivers said that their parents/guardians have talked to them several times about traffic safety and rules of the road. Additionally, 24.92% [21.7,28.44] of young drivers said that their parents have talked to them about traffic safety and the rules of the road once or twice, and 4.62% [3.17,6.69] of drivers said their parents had never talked to them about these topics. Within subgroups, differences were found. Bivariate analysis results showed that a majority (83.76% [77.8,88.36]) of non-BDE drivers said their parents had talked to them several times about these issues, compared to 66.87% [61.84,71.54] and 66.99% [58.82,74.24] of drivers who had completed BDE with and without taking a time discount, respectively. A logistic regression analysis was performed to evaluate the differences between drivers who indicated that their parents/guardians had talked to them about traffic safety and rules of the road "Several times" and "Once or twice, or Never" (see Figure 5-50 in Appendix A). The logistic regression model produced odds ratios of 0.39 (p<0.01) for BDE drivers who took a time discount and 0.42 (p<0.01) for BDE drivers who did not take a time discount compared to non-BDE drivers. In other words, young drivers who completed BDE and took a time discount have an approximate 61% ((1-0.39)*100) decrease in the odds of talking with their parents about traffic safety and rules of the road several times, compared to drivers who did not complete BDE. Similarly, drivers who completed BDE without taking a time discount had a 58% ((1-0.42)*100) decrease in the likelihood of talking about these topics with their parents compared to non-BDE drivers. This suggests that drivers who did not complete BDE are more likely to talk to their parents frequently about traffic safety and the rules of the road compared to drivers who completed BDE with and without a time discount.

Figures 5-51 to 5-53 show that the vast majority of young drivers have had conversations with their parents/guardians about various driving related issues. Approximately 81.33% [78.02,84.24] of young drivers reported that their parents/guardians had talked to them about drinking and driving; 82.62% [79.39,85.43] about texting and driving; and, 83.57% [80.46,86.27] about distracted driving.

Figure 5-51: Do parents/guardians talk to young drivers about drinking and driving?

Number of strata	= 24		Number of obs	= 959
Number of PSUs	= 959		Population size	= 220441.26
			Design df	= 935
	Have your pare	nts ever talked	to you about	
	dri	nking and drivi	ng?	
classification	yes	no	Total	
BDE w/ TD	85.49	14.51	100	
	[81.31,88.87]	[11.13,18.69]		
BDE w/o TD	75.61	24.39	100	
	[68.01,81.88]	[18.12,31.99]		
non-BDE	80.91	19.09	100	
	[74.32,86.12]	[13.88,25.68]		
Total	81.33	18.67	100	
	[78.02,84.24]	[15.76,21.98]		
Key: row perce	entages			
[95% conf	fidence interval	s for row perce	ntages]	
Pearson:				
Uncorrected	chi2(2)	= 11.8222		
Design-based	F(1.93, 1808.7	6)= 3.9286	P = 0.0210	

Figure 5-52: Do parents/guardians talk to young drivers about texting and driving?

Number of strata	= 24		Number of obs	= 959
Number of PSUs	= 959		Population size	= 220441.26
			Design df	= 935
	Have your pare	ents ever talked	to you about	
	tex	ting and drivin	.g?	
classification	yes	no	Total	
BDE w/ TD	86.98	13.02	100	
	[82.99,90.15]	[9.855,17.01]		
BDE w/o TD	76.6	23.4	100	
	[69.17,82.69]	[17.31,30.83]		
non-BDE	82.22	17.78	100	
	[75.56,87.37]	[12.63,24.44]		
Total	82.62	17.38	100	
	[79.39,85.43]	[14.57,20.61]		
Key: row perce	entages			
[95% conf	idence interval	s for row perce	ntages]	
Pearson:				
Uncorrected	chi2(2)	= 13.7689		
Design-based	F(1.95, 1823.3	2)= 4.5845	P = 0.0109	

Figure 5-53: Do parents/guardians talk to young drivers about distracted driving other than texting and driving?

Number of strata	= 24		Number of obs	= 959
Number of PSUs	= 959		Population size	= 220441.26
			Design df	= 935
			· · · · · · · · · · · · · · · · · · ·	
	Have your pare	ents ever talked	to you about	
	di	stracted drivin	.g?	
classification	yes	no	Total	
BDE w/ TD	85.14	14.86	100	
	[80.96,88.53]	[11.47,19.04]		
BDE w/o TD	80.23	19.77	100	
	[73.25,85.74]	[14.26,26.75]		
non-BDE	85.23	14.77	100	
	[79.12,89.79]	[10.21,20.88]		
Total	83.57	16.43	100	
	[80.46,86.27]	[13.73,19.54]		
Key: row perce	entages			
[95% conf	idence interval	s for row perce	ntages]	
Pearson:				
Incorrected	chi2(2)	= 3,7373		
Design-based	F(1.94, 1816.0	(3) = 1.2804	P = 0.2778	
Design-based	F(1.94, 1816.0	3)= 1.2804	P = 0.2778	

Results of three logistic regression analyses (see Figures 5-54 to 5-56 in Appendix A), controlling for gender and age differences, investigated the variance among subgroups of drivers who indicated that their parents/guardians had discussed various driving issues with them (i.e., drinking and driving, texting and driving, and distracted driving). The first analysis looked at the differences among the three subgroups who said that their parents had talked to them about drinking and driving. An odds ratio of 0.55 (p=0.01) was found between drivers who completed BDE without taking a time discount and those who took a time discount. This means that BDE drivers who did not take a time discount had 45% ((1-0.55)*100) decreased odds of having a conversation with their parents about drinking and driving compared to drivers who completed BDE and took a time discount. No significant difference was found between either of these two subgroups and drivers who did not complete BDE.

The second logistic regression analysis evaluated the significance between subgroups of young drivers who said that their parents had talked to them about texting and driving. As with the drinking and driving issue, significant differences were found between drivers who completed BDE and took a time discount and those who completed BDE and did not take a time discount, but not compared to non-BDE drivers. An odds ratio of 0.52 (p=0.01) indicates that drivers who completed BDE and did not take a time discount were 48% ((1-0.52)*100) less likely than drivers who completed BDE and took a time discount to talk to their parents/guardians about texting and driving. The third regression analysis revealed no significant differences among the three subgroups of drivers for those drivers who said

that their parents/guardians had talked to them about distracted driving. These results suggest that young drivers who completed BDE and took a time discount had more frequent discussions with their parents about engaging in risky behaviours while driving compared to those who completed BDE and did not take a time discount. This may be explained by an increased feeling of responsibility among parents to remind their teens not to engage in risky behaviours because they are driving independently sooner than they otherwise would.

5.1.10 How often do young drivers drive on 400-series highways?

This subsection explores how often young drivers operated vehicles on 400-series highways, a network of controlled access highways spanning southern Ontario. The analysis differentiates between the time period when driving with a G1 and G2 licence, as well as differences across the three targeted subgroups (i.e., BDE with time discount, BDE without time discount, and non-BDE drivers).

Participants were asked to rate the frequency that they drove on 400-series highways on a scale of: Never, Once, Sometimes, Often, or Very often.

Results of a univariate analysis (see Figure 5-57 in Appendix A) showed that the majority of drivers (77.31% [73.92,80.37]) indicated that they never drove on 400-series highways during their G1 licence period. This finding is consistent with Ontario's graduated licensing law restricting G1 drivers from operating vehicles on 400-series highways during this period (Ministry of Transportation, Ontario 2014). However, there was still a large percentage of young drivers (22.69%) who admitted to driving on these highways as G1 licensed drivers at least once per month.

Results of the univariate analysis also indicated that G2 drivers operated vehicles on 400series highways more often than G1 licence holders (see Figure 5-58 in Appendix A). Approximately 32.75% of G2 drivers indicated that they drove on 400-series highways often or very often. Still, approximately one-quarter (26.81% [23.30,30.63]) of G2 drivers said that they never drove on 400-series highways.

A logistic regression analysis was performed to evaluate the differences among subgroups of drivers who drove "Often or Very often" compared to those who indicated that they drove "Sometimes, Once or Never" on 400-series highways in an average month (see Figure 5-59 in Appendix A). A significant difference in frequency of highway driving was found among G2 drivers who completed BDE and took a time discount and those who did not complete BDE, reporting an odds ratio of 0.48 (p<0.01). Strictly speaking, this means that G2 drivers who did not complete BDE are 52% ((1-0.48)*100) less likely to report driving on 400-series highways often or very often in the average month, than G2 drivers who completed BDE and took a time discount. Significant difference, with an odds ratio of 0.53 (p=0.01), was also found between G2 drivers who completed BDE and took a time discount and those who completed BDE without taking a time discount. This suggests that G2 drivers who completed BDE without taking a time discount are 47% ((1-0.53)*100) less

likely to drive on 400-series highways often or very often in the average month compared to those who did not take a time discount. Overall, this implies that G2 drivers who took a time discount were significantly more likely to report driving on 400-series highways compared to young drivers who did not take a time discount. No significant differences were found among the three targeted subgroups of young drivers with respect to how often they drive on 400-series highways during the G1 licence stage.

The results of the same logistic regression model (see Figure 5-59 in Appendix A) also revealed significant differences between genders with respect to the frequency of driving on 400-series highways during the G2 licence stage. An odds ratio of 0.60 (p=0.01) was identified between female and male drivers. This suggests that males are significantly more likely to drive on 400-series highways during their G2 licence period compared to female drivers.

5.1.11 How much experience does the driver have in higher-risk traffic situations (i.e., night driving, hazardous weather, heavy traffic)?

This subsection describes the amount of experience that young drivers had in specific traffic situations. The frequency of driving in rush hour; at night; and, in adverse weather conditions in the average month are described for G1 and G2 drivers. Participants were asked to rate the frequency of driving in these situations on a scale from Never, Once, Sometimes, Often, to Very often.

Univariate analyses were performed to identify the percentage of drivers who rated the frequency that they drove in each separate higher-risk situation in the average month as *Never, Once, Sometimes, Often, or Very often*. Additionally, logistic regression analyses were conducted to discern whether any differences among subgroups of drivers were present. The logistic regression models identified any significant differences between those drivers who experienced these situations "often" (i.e., categories of *Often or Very often*) versus those who experienced these situations "not often" (i.e., categories of *Never, Once, or Sometimes*).

Rush hour. In an average month, 27.67% [24.38,31.22] of young drivers said they never drove during rush hour during their G1 licence period; 25.52% [22.29,29.04] said they drove once per month in rush hour; 30.39% [26.92,34.09] said they drove sometimes during rush hour; 12.26% [10.09,14.83] said they drove during rush hour often; and, 4.16% [2.91,5.92] indicated that they drove very often during rush hour (see Figure 5-60).

In an average month, 8.33% [6.40,10.77] of G2 drivers said they never drove during rush hour; 14.39% [11.70,17.56] indicated that they drove once per month in rush hour; 27.2% [23.65,31.07] said they drove sometimes during rush hour; 29.25% [25.65,33.12] said they drove during rush hour often; and, 20.84% [17.75,24.30] said that they drove very often during rush hour (see Figure 5-61). Comparing the frequencies of rush hour driving between the G1 and G2 licence periods indicated that G2 drivers were significantly more frequently exposed to rush hour situations than G1 licenced drivers.

Results of a logistic regression analysis showed differences among the three targeted subgroups of drivers between those who said that they drove during rush hour in the G1 licence period often or very often and drivers who indicated that they did not often do so (see Figures 5-62 & 5-63 in Appendix A). An odds ratio of 0.53 (p=0.03) was found between BDE drivers who took a time discount and BDE drivers who did not take a time discount, meaning that G1 drivers who completed BDE and did not take a time discount were 47% less likely to drive often or very often during rush hour compared to G1 drivers who completed BDE and took a time discount. No significance was found between subgroups of drivers who completed BDE compared to those who did not complete BDE. Results of a logistic regression analysis, controlling for gender and age, revealed similar variances among subgroups of G2 drivers, with an odds ratio of 0.65 (p=0.04) between drivers who completed BDE and took a time discount and drivers who completed BDE and took a time discount and drivers who completed BDE and took a time discount and drivers who completed BDE and took a time discount and drivers who completed BDE and took a time discount and drivers who completed BDE and took a time discount. This indicates that, among drivers who completed BDE, those who took a time discount were significantly more likely to be exposed to rush hour driving compared to those who did not take a time discount during both the G1 and G2 licence stage.

Number of strata Number of PSUs	= 24 = 974		mber of obs pulation size	= 223239.08	
		De	sign df	= 950	
How often					
do/did you					
rush hour		classifi	cation		
during G1?	BDE w/ TD	BDE w/o TD	non-BDE	Total	
Never	21	31.71	36.12	27.67	
	[17.12,25.48]	[24.77,39.56]	[29.51,43.3]	[24.38,31.22]	
Once	25.87	24.93	25.63	25.52	
	[21.61,30.65]	[18.52,32.67]	[19.86,32.39]	[22.29,29.04]	
Sometimes	32.9	32.37	21.95	30.39	
	[28.2,37.96]	[25.19,40.48]	[16.61,28.41]	[26.92,34.09]	
Often	15.42	8.114	11.64	12.26	
	[12.02,19.58]	[4.886,13.18]	[7.992,16.65]	[10.09,14.83]	
Very Often	4.807	2.884	4.668	4.159	
	[2.998,7.624]	[1.114,7.259]	[2.578,8.307]	[2.905,5.921]	
Total	100	100	100	100	
[95% conf	idence intervals :	for column perce	entages]		
Pearson:					
Uncorrected	chi2(8) :	= 30.7380			
Design-based	F(7.51, 7134.31)	= 2.6346	P = 0.0084		

Figure 5-60: How often do young drivers operate vehicles during rush hour during G1?

F :	. f f		· · · · lo t ol o o · ol · · · · t o o		
Figure 5-61: How d	orten ao young	drivers operate	venicies auring	g rusn nour au	ring GZ?

Number of strata Number of PSUs	= 20 = 853	Nu Pc De	umber of obs opulation size ssign df	= 853 = 199090.43 = 833
How often do/did you drive during rush hour		classifi	cation	
during G2?	BDE w/ TD	BDE w/o TD	non-BDE	Total
Never	6.799 [4.724,9.693]	8.669 [5.003,14.61]	13.15 [8.678,19.44]	8.33 [6.401,10.77]
Once	13.02 [9.966,16.83]	16.69 [11.21,24.11]	13.83 [9.172,20.31]	14.39 [11.7,17.56]
Sometimes	26.63 [22.34,31.42]	29.94 [22.65,38.41]	22.6 [16.57,30.03]	27.2 [23.65,31.07]
Often	33.12 [28.39,38.21]	25.09 [18.4,33.22]	25.13 [18.67,32.93]	29.25 [25.65,33.12]
Very Often	20.43 [16.54,24.98]	19.62 [13.89,26.98]	25.29 [18.92,32.94]	20.84 [17.75,24.3]
Total	100	100	100	100
Key: column pe [95% conf	ercentages idence intervals :	for column perce	entages]	
Pearson: Uncorrected Design-based	chi2(8) = F(7.15, 5953.61):	= 14.1437 = 1.3157	P = 0.2370	

Night-time driving. As part of the GLS program in Ontario, G1 drivers are allowed to drive at night, but not between the hours of midnight and 5 a.m. In an average month, 23.54% [20.38,27.03] of young drivers said they never drove at night during their G1 licence period; 17.92% [15.13,21.10] said they drove once per month at night; 31.16% [27.69,34.84] said they drove sometimes at night; 19.21% [16.54,22.18] said they often drove at night; and, 8.17% [6.43,10.33] said that they drive very often at night (see Figure 5-64).

During the G2 licence period, Ontario drivers aged 19 and under are allowed to drive between midnight and 5 a.m., but only with a restricted number of teenage passengers in the vehicle. In an average month, 4.35% [2.95,6.38] of G2 drivers indicated that they never drove at night; 5.89% [4.03,8.53] said they drove once per month at night; 15.10% [12.37,18.30] said they drove sometimes at night; 30.51% [26.9,34.38] said they drove at night often; and, 44.15% [40.15,48.22] said they drove very often at night (see Figure 5-65). These results indicate that young drivers gained significantly more exposure to nighttime driving during their G2 licence period, compared to when they were driving with their G1 licence. To some extent, the lower frequency of driving at night in the G1 licence period may result from the restriction that G1 drivers not drive between midnight and five a.m.

A logistic regression analysis was conducted to examine the differences among the three subgroups of drivers with regards to the frequency that they exhibited driving at night during their G1 licence period (see Figure 5-66 in Appendix A). The analysis examined the difference between drivers who indicated that they often drove at night, compared to those who did not often drive at night. Significant variance was found in the G1 licence stage between drivers who completed BDE and took a time discount and those who completed BDE and did not take a time discount, with an odds ratio of 2.50 (p < 0.01). This means that drivers who completed BDE and took a time discount had a 150% ((2.50-1)*100) increase in the odds that they will drive at night often or very often during their G1 licence period compared to drivers who completed BDE and did not take a time discount. Similarly, an odds ratio of 2.32 (p<0.01) was found between non-BDE drivers and those who completed BDE without taking a time discount. In other words, non-BDE drivers had a 132% ((2.32-1)*100) increase in the likelihood that they will drive at night often or very often during their G1 licence period compared to drivers who completed BDE without taking a time discount. This is an interesting finding due to the fact that the results indicate that drivers who completed BDE and took a time discount were more similar to drivers who did not complete BDE, than drivers who completed BDE without taking a time discount. One possible explanation for this occurrence could be that those drivers who completed BDE and took a time discount were more confident in their skills during their G1 licence period compared to those who did not take a time discount by virtue of the fact that they expected to obtain their G2 licence early. Similarly, drivers who did not complete BDE may have had misplaced confidence in their abilities to begin with, leading to overconfidence compared to drivers who completed BDE without taking a time discount. On the other hand, it is also possible that this over-confidence could actually be attributed to other factors, such as parental beliefs that their teen was prepared to drive at night, and not necessarily the perceptions of the teens themselves.

Results of this logistic regression model also demonstrated that there were significant differences between genders with respect to the frequency of driving at night during the G1 licence period. An odds ratio of 0.68 (p<0.01) was found for females, compared to male drivers. This suggests that young female drivers were 32% ((1-0.68)*100) less likely than males to drive at night often or very often during the G1 licence stage.

A second logistic regression analysis was conducted to evaluate the frequency of nighttime driving (i.e., often vs. not often) during the G2 licence stage (see Figure 5-67 in Appendix A). Results indicated that those drivers who completed BDE and took a time discount had increased odds of reporting driving at night during the G2 licence stage compared to drivers who completed BDE without taking a time discount and those who did not complete BDE. An odds ratio of 0.56 (p=0.01) was found between drivers who completed BDE without taking a time discount and those who completed BDE and took a time discount, indicating that drivers who completed BDE without taking a time discount had a 44% ((1-0.56)*100) decrease in the odds of driving at night often or very often compared to BDE drivers who took a time discount. Additionally, an odds ratio of 0.58

TIRF.

(p=0.02) showed the significance between drivers who completed BDE with a time discount and those who did not complete BDE, implying that those drivers who did not complete BDE had a 42% ((1-0.58)*100) decrease in the likelihood that they would drive at night often or very often compared to drivers who completed BDE and took a time discount. The difference in variance among subgroups of drivers between the G1 and G2 licence periods may be explained by the hypothesis that once drivers enter the G2 licence stage, those who took a time discount may feel an increased sense of confidence, by virtue of having obtained their G2 licence sooner, and therefore feel that they are more prepared to drive at night compared to other young drivers. Conversely, young drivers may have obtained a time discount because they perceived a stronger need to drive unsupervised at night.

Contrary to the variance found between genders during the G1 licence period, no significant differences were found among males and females with respect to the frequency of night-time driving during the G2 licence period.

Number of strata	= 24	Nu	mber of obs	= 974
Number of PSUs	= 974	Po	pulation size	= 223239.08
		De	sign df	= 950
How often				
do/did you				
drive at night		classifi	cation	
during G1?	BDE w/ TD	BDE w/o TD	non-BDE	Total
Never	15.3	31.51	29.5	23.54
	[11.87,19.49]	[24.52,39.44]	[23.14,36.77]	[20.38,27.03]
Once	21.57	16.25	12.5	17.92
	[17.52,26.27]	[11.17,23.06]	[8.32,18.35]	[15.13,21.1]
Sometimes	29.11	35.85	28.53	31.16
	[24.64,34.03]	[28.52,43.91]	[22.69,35.19]	[27.69,34.84]
Often	21.86	14.11	21.11	19.21
	[17.99,26.29]	[9.736,20.01]	[15.88,27.51]	[16.54,22.18]
Very Often	12.16	2.281	8.363	8.173
_	[9.164,15.97]	[.7324,6.879]	[5.366,12.81]	[6.431,10.33]
Total	100	100	100	100
Key: column pe [95% conf	rcentages idence intervals :	for column perce	ntages]	
Pearson:	1.1.0.(.0.)	60 61 60		
Uncorrected	chi2(8) =	= 63.6163		
Design-based	F(7.44, 7064.70)	= 5.2583	P = 0.0000	
•				

Figure 5-64: How often do young drivers operate vehicles at night during G1?

							-					
Fidure	5-65:	HOW	otten	do	vound	drivers	operate	vehicles	at nic	aht.	durina	G2?
					,							

Number of strata	= 20	Nu	umber of obs	= 853
Number of PSUs	= 853	Po	Population size	
		De	esign df	= 833
How often do				
you drive at				
night during		classifi	cation	
G2?	BDE w/ TD	BDE w/o TD	non-BDE	Total
Never	3.139	4.956	7.364	4.354
	[1.744,5.588]	[2.366,10.09]	[3.948,13.33]	[2.951,6.38]
Once	1.74	12.59	4.836	5.891
	[.8624,3.48]	[7.71,19.89]	[2.19,10.34]	[4.031,8.531]
Sometimes	15.46	13.37	17.97	15.1
	[12.04,19.64]	[8.47,20.47]	[12.49,25.18]	[12.37,18.3]
Often	35.01	28.73	18.28	30.51
	[30.22,40.12]	[21.78,36.86]	[13.11,24.91]	[26.9,34.38]
Very Often	44.65	40.35	51.54	44.15
	[39.59,49.83]	[32.44,48.8]	[43.5,59.51]	[40.15,48.22]
Total	100	100	100	100
Key: column pe	rcentages			
[95% conf	idence intervals	for column perce	entages]	
Pearson:				
Uncorrected	chi2(8)	= 52.4248		
Design-based	F(7.25, 6039.76)	= 4.9376	P = 0.0000	

Adverse weather. Results of a univariate analysis revealed that, in an average month, 29.23% [25.82,32.89] of young drivers said they never drove in adverse weather conditions during their G1 licence period; 33.56% [30,37.33] said they drove once per month in adverse weather; 25.88% [22.71,29.32] said they drove sometimes in adverse weather; 8.75% [6.90,11.02] said they often drove in adverse weather; and, 2.59% [1.68,3.97] said they drove very often in adverse weather conditions (see Figure 5-68).

In an average month, 10.01% [7.67,12.96] of G2 drivers indicated that they never drove in adverse weather; 13.86% [11.24,16.99] said they drove once per month in adverse weather; 33.43% [29.67,37.40] said they sometimes drove in adverse weather; 28.19% [24.63,32.05] said they drove in adverse weather often; and, 14.50% [11.97,17.47] said that they drove very often in adverse weather (see Figure 5-69). Comparing the frequencies of results between G2 and G1 exposure suggests that young drivers were significantly more exposed to adverse weather conditions during their G2 licence period, compared to when they were driving during their G1 licence period.

A logistic regression analysis found significance in the frequency of driving in adverse weather conditions (often vs. not often) between subgroups of drivers during the G1 licence period (see Figure 5-70 in Appendix A). An odds ratio of 0.40 (p=0.01) was found between drivers who completed BDE and took a time discount and those who completed BDE and did not take a time discount. This means that among drivers who completed BDE,

TIRF

those who did not take a time discount experienced a 60% ((1-0.40)*100) decrease in the odds of driving in adverse weather conditions often or very often during their G1 licence period, compared to those who decided to take a time discount and obtain their G2 licence early. A significant odds ratio of 2.36 (p=0.03) was also found between drivers who did not complete BDE and those who completed BDE without taking a time discount. This suggests, again, that drivers who did not complete BDE had a 136% ((2.36-1)*100) increase in the likelihood of driving in adverse weather compared to drivers who completed BDE without taking a time discount. Additionally, females were found to be significantly less likely to drive in adverse weather conditions during their G1 licence stage compared to male drivers, with an odds ratio of 0.56 (p=0.02).

The logistic regression analysis revealed no significant differences among subgroups of drivers with respect to the frequency of driving in adverse weather conditions (often vs. not often) during their G2 licence period (see Figure 5-71 in Appendix A). As well, no significant differences between genders were identified in this model, as opposed to driving during the G1 licence period.

Across all of these higher-risk driving situations, the results revealed clear indications that drivers who completed BDE and took a time discount were more frequently exposed to higher-risk traffic situations compared to those drivers who completed BDE without taking a time discount. This increased exposure to risky situations during the G1 and G2 licence periods suggests that teens taking a time discount are more likely to put themselves and others at risk.

Figure 5-68: How often do young drivers operate vehicles in adverse weather conditions during G1?

Number of strata	= 24	Nu	= 974	
Number of PSUs	= 974	Po	pulation size	= 223239.08
		De	sign df	= 950
How often				
do/did you				
drive in				
adverse weather		classifi	cation	
during G1?	BDE w/ TD	BDE w/o TD	non-BDE	Total
Never	22.27	33.93	37.29	29.23
	[18.24,26.9]	[26.68,42.01]	[30.52,44.59]	[25.82,32.89]
Once	35.6	36.63	24.52	33.56
	[30.78,40.73]	[29.15,44.81]	[19.04,30.97]	[30,37.33]
Sometimes	27.62	23.22	26.1	25.88
	[23.25,32.45]	[17.29,30.42]	[20.24,32.96]	[22.71,29.32]
Often	12.14	4.738	7.384	8.745
	[9.156,15.93]	[2.31,9.473]	[4.511,11.86]	[6.9,11.02]
Very Often	2.372	1.49	4.706	2.587
-	[1.221,4.557]	[.4449,4.872]	[2.511,8.65]	[1.676,3.973]
Total	100	100	100	100
Key: column p	ercentages			
[95% con:	fidence intervals	for column perce	entages]	
Pearson:				
Uncorrected	chi2(8)	= 39.7040		
Design-based	F(7.59, 7209.16)	= 3.4073	P = 0.0008	

Figure 5-69: How often do young drivers operate vehicles in adverse weather conditions during G2?

Number of strata Number of PSUs	= 20 = 853	Nu Po De	mber of obs pulation size sign df	= 853 = 199090.43 = 833
How often do/did you				
drive in				
during G2?	BDE w/ TD	CIASSIII BDE w/o TD	non-BDE	Total
Never	5.95 [3.915,8.943]	15.42 [10.09,22.86]	11.79 [7.358,18.36]	10.01 [7.674,12.96]
Once	12.33 [9.278,16.2]	14.71 [9.645,21.8]	17.46 [11.99,24.74]	13.86 [11.24,16.99]
Sometimes	36.42 [31.6,41.54]	31.12 [23.82,39.5]	28 [21.35,35.79]	33.43 [29.67,37.4]
Often	28.37 [23.92,33.28]	29.69 [22.55,37.98]	23.89 [17.94,31.06]	28.19 [24.63,32.05]
Very Often	16.93 [13.34,21.24]	9.062 [5.345,14.95]	18.86 [13.33,26]	14.5 [11.97,17.47]
Total	100	100	100	100
Key: column pe [95% conf	rcentages idence intervals :	for column perce	ntages]	
Pearson:				
Uncorrected	chi2(8)	= 31.2497		
Design-based	F(7.20, 6001.56)	= 2.8699	P = 0.0050	

5.1.12 How do young drivers perceive their driving ability (i.e., before/after or without BDE program)?

The following subsection explores how young drivers perceive their own driving abilities, as well as the impact of BDE on specific driving skills. Participants were asked to rate their driving abilities, prior to completing BDE, with respect to specific driving behaviours (e.g., merging, making left turns at intersections), on a scale from very poor to very good. They were subsequently asked to rate their abilities with respect to those behaviours on the same scale, after having completed BDE. Participants who did not complete BDE were also asked to rate their own driving abilities with respect to these behaviours.

Univariate analyses were performed to identify the percentage of drivers who rated each separate behaviour as *Very poor, Poor, Fair, Good, or Very good*. Additionally, logistic regression analyses were conducted to discern whether any differences among subgroups of drivers were present. The logistic regression revealed any significant differences between those drivers who perceived their abilities as "good" (i.e., categories of *Good or Very good*) versus those who perceived their abilities as "not good" (i.e., categories of *Very poor, Poor, or Fair*). Subsequent logistic regression analyses were performed for each skill to identify the variance between the drivers' ratings of their ability before versus after completing the BDE program, as well as the differences in ratings between drivers who did not complete BDE versus the ratings of drivers who did complete BDE. This allowed for a comparison of how young drivers perceived the impact of completing BDE on their driving skills and knowledge.

Merging. Results of a univariate analysis found that among young drivers who have completed BDE, 6.29% [4.20,9.31] rated their ability to merge into traffic before having enrolled in BDE as very poor; 21.17% [17.26,25.69] as poor; 38.76% [33.97,43.77] as fair; 27.11% [22.93,31.74] as good; and, 6.68% [4.51,9.79] as very good (see Figure 5-72 in Appendix A).

Among all drivers who completed BDE, less than 1% [0.01,0.44] rated their ability to merge into traffic after having completed BDE as very poor; 1.65% [0.77,3.49] rated this ability as poor; 7.71% [5.52,10.65] as fair; 45.33% [40.91,49.83] as good; and, 45.25% [40.91,49.66] as very good (see Figure 5-73 in Appendix A).

Results of a logistic regression analysis did not reveal any significant differences in the perceived merging abilities between drivers who completed BDE with and without taking a time discount. However, it did show a significant odds ratio of 0.48 (p<0.01) for females, compared to males, with respect to how they rated their merging abilities before enrolling in BDE (see Figure 5-74 in Appendix A). This indicates that female drivers rated their merging abilities before BDE significantly lower than young male drivers. This difference was not found to be significant in the ratings of merging abilities after BDE.

A logistic regression analysis, controlling for gender, age and BDE status with or without a time discount, was conducted to examine differences in how young drivers rated their

ability to merge into traffic before and after completing BDE (see Figure 5-75 in Appendix A). The results showed an odds ratio of 1.60 (p < 0.01) between the ratings of merging skills before and after BDE. In other words, young drivers who have completed BDE had 60% ((1.60-1)*100) increased odds that they will rate their merging skills as good or very good after completing BDE, compared to before they completed BDE. Overall, this implies that young drivers believed that their merging skills improved after having completed the BDE course. Another logistic regression analysis was conducted to examine an interaction effect with respect to how drivers who completed BDE and took a time discount and drivers who completed BDE without taking a time discount rated their abilities to merge into traffic safely before and after completing BDE (see Figure 5-76 in Appendix A). No significant variances between these two subgroups were found, indicating that drivers who completed BDE and took a time discount did not rate their abilities to merge into traffic safely after BDE compared to before BDE significantly different than drivers who completed BDE without taking a time discount. In other words, the difference between the ratings of merging skill before and after completing BDE were not significantly different among those who took a time discount compared to those who did not take a time discount.

Drivers who did not complete BDE were also asked to rate their ability to merge into traffic safely. There were no participants in the non-BDE group who rated their ability to merge into traffic as very poor; 4.39% [1.97,9.47] rated their merging abilities as poor; 19.51% [14.18,26.24] as fair; 38.1% [31.30,45.40] as good; and, 38.00% [31.91,44.49] of the participants rated their merging ability as very good (see Figure 5-77 in Appendix A). When comparing these percentages to the ratings of young drivers who have completed BDE, it is clear that a larger percentage of BDE drivers rated their ability to merge into traffic safely as good or very good, compared to drivers who did not complete BDE.

Results of an additional logistic regression analysis, controlling for gender and age differences, revealed an odds ratio of 1.84 (p=0.01) for the merging skill rating of young drivers after completing BDE compared to those who did not complete BDE (See Figure 5-78 in Appendix A). This means that young drivers who completed BDE with and without taking a time discount were 84% ((1.84-1)*100) more likely to rate their merging abilities as good or very good after completing BDE compared to those drivers who did not complete BDE.

Making left turns at intersections. Among drivers who completed BDE, 4.20% [2.59,6.76] rated their ability to make left turns at intersections before having enrolled in BDE as very poor; 17.00% [13.51,21.17] as poor; 35.64% [30.97,40.61] as fair; 31.79% [27.29, 36.65] as good; and, 11.37% [8.49,15.07] as very good (see Figure 5-79 in Appendix A).

Of all drivers who completed BDE, less than 1% [0.04,1.08] rated their ability to make left turns at intersections after having completed BDE as very poor; 0.99% [0.35,7.92] as poor;

TIRE

5.31% [3.53,7.92] as fair; 37.03% [32.82,41.46] as good; and, 56.47% [52.02,60.82] rated their abilities as very good (see Figure 5-80 in Appendix A).

Results of a logistic regression analysis did not reveal any significant differences in the perceived left turning abilities (either before or after completing BDE) between drivers who completed BDE with and without taking a time discount. However, it did reveal a significant odds ratio of 0.58 (p=0.01) for females, compared to males, with respect to how they rated their turning abilities before enrolling in BDE (see Figure 5-81 in Appendix A). Similar to the gender differences in merging ability ratings before enrolling in BDE, this suggests that female drivers also rated their left turning abilities before BDE significantly lower than young male drivers. This difference was not statistically significant in the ratings of left turning abilities at intersections after completing BDE.

A logistic regression analysis, controlling for gender, age and BDE status with or without a time discount, was conducted to examine differences in how young drivers rated their ability to make left turns at intersections before versus after completing BDE (see Figure 5-82 in Appendix A). The results showed an odds ratio of 1.51 (p<0.01) between the ratings of turning skills before and after completing BDE. In other words, young drivers who completed BDE had 51% ((1.51-1)*100) increased odds that they would rate their ability to make left turns as good or very good after completing BDE, compared to the ratings of their skills before they completed BDE. Another logistic regression analysis was conducted to examine an interaction effect with respect to how drivers who completed BDE and took a time discount and drivers who completed BDE without taking a time discount rated their abilities to make left turns at intersections before and after completing BDE (see Figure 5-83 in Appendix A). No significant variance between these two subgroups was found, indicating that drivers who completed BDE and took a time discount did not rate their abilities to make left turns at intersections after as compared to before BDE significantly differently than drivers who completed BDE without taking a time discount.

There were no participants in the non-BDE group who rated their ability to make left turns at intersections as very poor; 1.26% [0.29,5.40] rated their left turn ability as poor; 21.17% [15.88,27.63] as fair; 33.15% [26.67,40.34] as good; and, 44.42% [38.09,50.95] as very good (see Figure 5-84 in Appendix A). Again, results of the univariate analysis revealed that a smaller percentage of drivers who did not complete BDE rated their left turn abilities as good or very good compared to drivers who completed BDE with and without taking a time discount.

To confirm the significance of this observation, a logistic regression analysis was conducted to evaluate the variance between the left turning skill ratings of drivers who did not complete BDE versus the ratings of drivers after having completed BDE (see Figure 5-85 in Appendix A). An odds ratio of 2.03 (p<0.01) was found for the ratings of drivers who had completed BDE, compared to those drivers who had not completed BDE. These findings suggest that young drivers who completed BDE were 103% ((2.03-1)*100) more likely to

rate their left turning skills at intersections as good or very good, compared to those who did not complete BDE.

Passing other cars. Among drivers who completed BDE, 6.24% [4.20,9.17] rated their ability to pass other cars safely before having enrolled in BDE as very poor; 17.31% [13.82,21.47] as poor; 33.48% [28.91,38.38] as fair; 31.40% [26.89,36.28] as good; and, 11.57% [8.63,15.36] rated their passing ability as very good (see Figure 5-86 in Appendix A).

After completing BDE, less than 1% [0.16,2.35] of drivers rated their ability to pass other cars safely as very poor; 1.63% [0.69,3.83] as poor; 7.80% [5.64,10.69] as fair; 38.81% [34.58,43.21] as good; and, 51.14% [46.71,55.55] as very good (see Figure 5-87 in Appendix A).

While results of a logistic regression analysis, controlling for gender and age differences, did not show any significant variance among drivers who had completed BDE with or without a time discount with respect to the ratings of their passing abilities before enrolling in BDE, they did reveal a significant difference in the ratings between genders (see Figure 5-88 in Appendix A). An odds ratio of 0.46 (p<0.01) was reported for females, compared to male drivers, meaning that females had a 54% ((1-0.46)*100) decrease in the likelihood that they will rate their passing abilities as good or very good before enrolling in BDE.

A greater percentage of BDE drivers who took a time discount (56.4% [51.25,61.42]) rated their passing abilities as very good after completing BDE, compared to drivers who completed BDE but did not take a time discount (43.55% [35.85,51.58]). Results of a logistic regression analysis also showed a significant difference, with an odds ratio of 0.51 (p=0.03) between BDE drivers who took a time discount and BDE drivers who did not take a time discount in terms of whether or not they rated their ability to pass other cars as good (i.e., ratings of *Good or Very good*) versus not good (i.e., ratings of *Very poor, Poor, or Fair*) after completed BDE and did not take a time discount had approximately a 49% ((1-0.51)*100) decrease in the odds that they will perceive their ability to pass other cars as *Good or Very good*, compared to drivers who completed BDE and took a time discount.

A logistic regression analysis, controlling for gender, age and BDE status with or without a time discount, was conducted to examine the differences in how young drivers rated their ability to pass other cars before versus after completing BDE (see Figure 5-90 in Appendix A). The results show an odds ratio of 1.45 (p=0.01) between the ratings of turning skills before and after BDE. In other words, young drivers who have completed BDE had 45% ((1.45-1)*100) increased odds that they will rate their ability to pass other cars as good or very good after completing BDE, compared to before they completed BDE. A secondary logistic regression analysis was conducted to examine an interaction effect with respect to how drivers who completed BDE and took a time discount and drivers who completed BDE without taking a time discount rated their abilities to pass other cars safely before and

TIRF

after completing BDE (see Figure 5-91 in Appendix A). No significant variances between these two subgroups were found, indicating that drivers who completed BDE and took a time discount did not rate their abilities to pass other cars safely before versus after BDE significantly differently than drivers who completed BDE without taking a time discount.

Of the young drivers who did not complete BDE, 0.85% [0.12,5.90] rated their ability to pass other cars as very poor; 4.89% [2.29,10.11] rated their passing abilities as poor; 20.08% [14.70,26.80] as fair; 28.03% [22.01,34.96] as good; and, 46.16% [39.60,52.85] rated this ability as very good (see Figure 5-92 in Appendix A). Once again, a larger percentage of young drivers who completed BDE rated their ability to pass other cars as good or very good, compared to the percentage of drivers who did not complete BDE.

To confirm the significance of this observation, a logistic regression analysis was conducted to evaluate the variance between the passing skill ratings of drivers who did not complete BDE versus the ratings of those drivers who completed BDE (see Figure 5-93 in Appendix A). An odds ratio of 1.90 (p<0.01) was found for the ratings of drivers who completed BDE, compared to those drivers who did not complete BDE. These findings suggest that young drivers who completed BDE were 90% ((1.90-1)*100) more likely to rate their passing abilities as good or very good, compared to those who did not complete BDE.

Knowledge of right of way rules. Among drivers who completed BDE, 5.31% [3.55,7.87] rated their knowledge of who has right of way on the road before having enrolled in BDE as very poor; 12.92% [9.94,16.63] as poor; 30.30% [25.96,35.03] as fair; 34.21% [29.6,39.15] as good; and, 17.25% [13.63,21.6] rated their knowledge as very good (see Figure 5-94 in Appendix A).

Among all drivers who completed BDE, less than 1% [0.07,2.00] rated their knowledge of who has right of way on the road after completing BDE as very poor; 0.62% [0.23,1.62] as poor; 5.35% [3.59,7.91] as fair; 31.09% [27.11,35.37] as good; and, 62.56% [58.11,66.81] as very good (see Figure 5-95 in Appendix A).

Results of a logistic regression analysis revealed no significant differences between the ratings (i.e., before or after completing BDE) of drivers who completed BDE and took a time discount compared to drivers who completed BDE and did not take a time discount. As opposed to the differences found between genders for previous skills, no difference between genders was found as a result of the logistic regression analysis, in this instance, of young drivers' ratings of their right of way knowledge before or after completing BDE.

A logistic regression analysis, controlling for gender, age and BDE status with or without a time discount, was conducted to examine differences in how young drivers rated their knowledge of right of way rules before versus after completing BDE (see Figure 5-96 in Appendix A). The results showed an odds ratio of 1.39 (p=0.02) between the perception of right of way knowledge before and after BDE. In other words, young drivers who had completed BDE had 39% ((1.39-1)*100) increased odds that they would rate their knowledge of right of way rules as good or very good after completing BDE, compared to

before they completed BDE. Another logistic regression analysis was conducted to examine an interaction effect with respect to how drivers who completed BDE and took a time discount and drivers who completed BDE without taking a time discount rated their knowledge of right of way rules before and after completing BDE (see Figure 5-97 in Appendix A). No significant variances between these two subgroups were found, indicating that drivers who completed BDE and took a time discount did not rate their knowledge of right of way rules before and after BDE significantly differently than drivers who complete BDE without taking a time discount.

Within the young driver population who did not complete BDE, approximately 1% [0.08,3.87] rated their knowledge of who has right of way on the road as poor; 22.75% [16.97,29.8] rated their right of way knowledge as fair; 29.87% [23.87,36.66] as good; and, 46.82% [39.81,53.96] perceived their knowledge of who has right of way on the road as very good (see Figure 5-98 in Appendix A). As well, no participants in the non-BDE group rated their knowledge of right of way rules as very poor.

From the results of the bivariate analyses it was found that, once again, a greater percentage of young drivers who completed BDE rated their right of way knowledge as good or very good compared to the percentage of young drivers who did not complete BDE. To further test the significance of this observation, a logistic regression analysis was conducted (see Figure 5-99 in Appendix A). An odds ratio of 3.01 (p<0.01) was found for the 'after' ratings of drivers who completed BDE, compared to the ratings of those drivers who did not complete BDE. These findings suggest that young drivers who completed BDE are 201% ((3.01-1)*100) more likely to rate their knowledge of right of way rules as good or very good, compared to those who did not complete BDE.

Vehicle handling. Among drivers who completed BDE, 2.15% [1.12,4.07] rated their vehicle handling abilities before having enrolled in BDE as very poor; 11.42% [8.55,15.10] as poor; 33.06% [28.54,37.91] as fair; 36.67% [31.96,41.64] as good; and, 16.70% [13.34,20.71] as very good (see Figure 5-100 in Appendix A).

Among all drivers who completed BDE, less than 1% [0.02,1.19] rated their vehicle handling abilities after having completed BDE as very poor; less than 1% [0.07,2.00] as poor; 3.23% [1.86,5.54] as fair; 32.11% [28.06,36.44] as good; and, 64.12% [59.76,68.25] perceived their vehicle handling skills to be very good (see Figure 5-101 in Appendix A).

Results of logistic regression analyses, controlling for gender and age differences, revealed no significant differences among drivers who completed BDE and took a time discount compared to drivers who completed BDE and did not take a time discount.

A logistic regression analysis, controlling for gender, age and BDE status with or without a time discount, was conducted to examine the differences in how young drivers rated their vehicle handling skills before versus after completing BDE (see Figure 5-102 in Appendix A). The results show an odds ratio of 1.45 (p=0.01) between the ratings of vehicle handling skills before and after BDE. In other words, young drivers who have completed BDE had

45% ((1.45-1)*100) increase in the odds that they will rate their vehicle handling abilities as good or very good after completing BDE, compared to before they completed BDE. A secondary logistic regression analysis was conducted to investigate an interaction effect with respect to how drivers who completed BDE and took a time discount and drivers who completed BDE without taking a time discount rated their vehicle handling abilities before and after completing BDE (see Figure 5-103 in Appendix A). No significant variances between these two subgroups were found, meaning that drivers who completed BDE and took a time discount did not rate their vehicle handling abilities before as compared to after BDE significantly differently than drivers who completed BDE without taking a time discount.

Among all young drivers who did not complete BDE, less than 1% [0.12,5.90] rated their vehicle handling abilities as poor; 11.27% [7.08,17.46] rated their vehicle handling as fair; 31.43% [25.13,38.50] as good; and, 56.45% [49.64,63.02] as very good. There were no participants in the non-BDE group who rated their vehicle handling abilities as very poor (see Figure 5-104 in Appendix A).

A larger percentage of young drivers who completed BDE, approximately 96%, rated their vehicle handling abilities as good or very good after completing BDE, compared to about 88% of drivers who did not complete BDE. To confirm the statistical significance of this observation, a logistic regression analysis, controlling for age and gender, was conducted to evaluate the variance between the vehicle handling skill ratings of drivers who did not complete BDE versus the ratings of those drivers who completed BDE (see Figure 5-105 in Appendix A). An odds ratio of 1.96 (p=0.03) was found for the ratings of drivers who completed BDE, compared to those drivers who did not complete BDE. These findings suggest that young drivers who completed BDE were 96% ((1.96-1)*100) more likely to rate their vehicle handling abilities as good or very good, compared to those who did not complete BDE.

5.1.13 How often do young drivers engage in risky driving behaviours, and how do they perceive them?

The perception and frequency of risk taking behaviours among young drivers are analyzed in this subsection. Participants were asked to report the frequency with which they engaged in specific risky driving behaviours (e.g., speeding, texting while driving) during their G1 and G2 licence stages. Participants were asked to rate the frequency of these risky behaviours according to a scale ranging from never to very often.

Since G1 drivers were assumed to be unlikely to exhibit certain behaviours while driving under supervision, only G2 drivers were asked about the frequency of engaging in the following behaviours: taking chances when driving for the fun of it; driving with one or more teenage passengers; running red lights; passing other cars because it is exciting; driving within two hours of consuming any type of drug (excluding alcohol); driving within two hours of consuming any amount of alcohol; and, driving especially close to the car in front to let its driver know that they should go faster or get out of the way.

TIRF.

Univariate analyses were performed to determine the percentage of drivers who engaged in these behaviours *Never*, *Once*, *Sometimes*, *Often*, *or Very often*. Additionally, logistic regression analyses, controlling for age and gender differences, were conducted to examine whether any variance among the three targeted subgroups of drivers was present. The logistic regression was used to identify any significant differences between those drivers who engaged in these behaviours "often" (i.e., categories of *Often or Very often*) versus those who experienced these behaviours "not often" (i.e., categories of *Never*, *Once*, *or Sometimes*). For certain behaviours (e.g., making phone calls while driving, running red lights), due to the very small number of people who responded as having engaged in these behaviours "often" or in instances where bivariate analysis revealed a clear relationship among subgroups, logistic regression analyses were conducted with respect to the frequency of having engaged in these behaviours "at least once" (i.e., categories of *Once*, *Sometimes*, *Often*, *or Very Often*) in the average month. This allowed for a more representative sample of young drivers to be analyzed.

Speeding. In an average month, during the G1 licence stage, 36.32% [32.70,40.1] of young drivers said they never speed; 20.95% [17.92,24.34] said they speed once per month; 23.38% [20.29,26.79] said they speed sometimes; 13.41% [11.04,16.21] said they speed often; and, 5.93% [4.47,7.83] said they speed very often. With respect to subgroups of drivers, 44.34% [37.20,51.72] of non-BDE drivers said they never speed during their G1 licence stage, compared to 30.13% [25.61,35.07] of drivers who completed BDE and took a time discount (see Figure 5-106), indicating that a much higher percentage of drivers who completed BDE and took a time discount speed at least once per month during the G1 licence period, compared to drivers who did not complete BDE.

In the average month, during the G2 licence stage, 16.17% [13.40,19.39] of young drivers said they never speed; 15.11% [12.34,18.37] speed once per month; 25.82% [22.36,29.61] speed sometimes; 20.92% [17.85,24.36] speed often; and, 21.98% [18.78,25.55] said they speed very often. Similar to the G1 licence stage, 24.33% [17.94,32.1] of non-BDE drivers said they never speed during their G2 licence stage, compared to 13.82% [10.70,17.68] of drivers who completed BDE and took a time discount (see Figure 5-107). Comparing these results with those from the G1 licence period also suggest that there is an increase in the frequency that young drivers speed during their G2 licence stage.

Since differences among subgroups of drivers were identified in the bivariate analyses with respect to the percentage of drivers who reported that they never speed, logistic regression analyses were conducted to confirm the differences in frequency (i.e., Never vs. At least once per month), while controlling for gender and age differences that young drivers reported speeding during the G1 and G2 licence periods. Results revealed an odds ratio of 0.65 (p=0.03) for drivers who completed BDE and did not take a time discount compared to those who completed BDE and took a time discount (see Figure 5-108 in

TIRF

Appendix A). This means that drivers who completed BDE but did not take a time discount had a 35% ((1-0.65)*100) decrease in the likelihood that they would speed at least one time in the average month while driving during the G1 licence period compared to those drivers who took a time discount. Similarly, an odds ratio of 0.60 (p=0.01) was found for drivers who did not complete BDE compared to those who completed BDE and took a time discount. Again, this suggests that drivers who did not complete BDE had 40% ((1-0.60))*100) decreased odds of speeding at least one time in the average month while driving during the G1 licence period.

Differences were also identified among subgroups of drivers during their G2 licence period with respect to how often they engaged in speeding. An odds ratio of 0.47 (p<0.01) was found between G2 drivers who completed BDE and took a time discount and those who did not complete BDE (see Figure 5-109 in Appendix A), indicating that young drivers who did not complete BDE had a 53% ((1-0.47)*100) decrease in the odds that they will speed at least one time in the average month, compared to drivers who completed BDE and took a time discount. No significant variance was found in the logistic regression analysis between drivers who completed BDE without taking a time discount compared to the other two subgroups with respect to whether or not they sped at least once in the average month during the G2 licence period. Ultimately, this suggests that drivers who completed BDE and took a time discount speed more frequently compared to drivers who did not complete BDE and, during the G1 licence period, those who completed BDE without taking a time discount.

Previous research has reported that males, especially young males, are more likely to engage in speeding compared to females (GHSA 2012; Vanlaar et al. 2008). However, results of the logistic regression model described above did not show any statistically significant differences between genders with respect to whether or not they reported speeding at least once in the average month while driving during the G1 and G2 licence periods. It should be noted that this does not necessarily imply that this trend no longer exists, only that statistically significant differences were not identified in this instance, for this particular frequency of speeding.

Figure 5-106: How often do young drivers speed while driving during G1?

Number of str	ata = 24		Number of obs	= 974
Number of PSU	s = 974		Population size	= 223239.08
			Design df	= 950
How often				
do/did you				
speed		classif	ication	
during G1?	BDE w/ TD	BDE w/o TD	non-BDE	Total
Never	30.13	39.95	44.34	36.32
	[25.61,35.07]	[32.37,48.04]	[37.2,51.72]	[32.7,40.1]
Once	18.44	23.42	22.69	20.95
	[14.87,22.64]	[17.08,31.22]	[16.95,29.68]	[17.92,24.34]
Sometimes	29.2	20.35	15.3	23.38
	[24.68,34.16]	[14.52,27.76]	[10.87,21.11]	[20.29,26.79]
Often	15.63	11.87	10.91	13.41
	[12.18,19.84]	[7.568,18.13]	[7.576,15.47]	[11.04,16.21]
Very Often	6.606	4.416	6.757	5.934
	[4.478,9.642]	[2.219,8.597]	[4.24,10.6]	[4.474,7.83]
Total	100	100	100	100
Key: colum	n percentages			
[95%	confidence interva	ls for column pe	rcentages]	
Boorgon				
Uncorrect	ed chi2(8)	= 30.7421		
Design-ba	sed F(7.45, 7073.	35)= 2.6733	P = 0.0077	

Figure 5-107: How often do young drivers speed while driving during G2?

Number of stra	ata = 20		Number of obs	= 853
Number of PSU	s = 853		Population size Design df	= 199090.43 = 833
How often do/did you				
speed		classif	ication	
during G2?	BDE w/ TD	BDE w/o TD	non-BDE	Total
Never	13.82	16.39	24.33	16.17
	[10.7,17.68]	[11,23.72]	[17.94,32.1]	[13.4,19.39]
Once	11.17	20.7	15.97	15.11
	[8.309,14.86]	[14.67,28.39]	[10.84,22.89]	[12.34,18.37]
Sometimes	25.65	28.05	20.97	25.82
	[21.44,30.38]	[21,36.37]	[15.23,28.16]	[22.36,29.61]
Often	25.77	15.79	15.55	20.92
	[21.45,30.61]	[10.64,22.81]	[10.58,22.27]	[17.85,24.36]
Very Often	23.58	19.07	23.19	21.98
	[19.47,28.26]	[13.18,26.78]	[17.17,30.54]	[18.78,25.55]
Total	100	100	100	100
Key: colum [95%	n percentages confidence interva	ls for column pe	ercentages]	
Pearson:				
Uncorrect	ed chi2(8)	= 30.7309		
Design-ba	sed F(7.13, 5937.	55)= 2.8310	P = 0.0057	

Texting while driving. In an average month, during the G1 licence stage, 88.75% [86.21,90.87] of young drivers said they never sent hand-held messages; 4.43% [3.23,6.05] sent hand-held messages once per month; 5.29% [3.75,7.40] sent hand-held messages sometimes; 1.16% [0.59,2.25] sent hand-held messages often; and, less than 1% [0.13,1.09] said they sent hand-held messages very often (see Figure 5-110).

In an average month, during the G1 licence stage, 92.78% [90.43,94.58] of young drivers said they never sent hands-free messages; 2.84% [1.77,4.52] sent hands-free messages once per month; 2.99% [1.83,4.83] sent hands-free messages sometimes; 1.04% [0.53,2.01] sent hands-free messages often while driving; and, 0.36% [0.12,1.08] said they sent hands-free messages very often (see Figure 5-111 in Appendix A).

As can be seen from the univariate analysis results, only a very small proportion of the young driver population admitted to sending hand-held and hands-free messages while driving during the G1 licence period. A logistic regression analysis was conducted to evaluate the variation between subgroups of G1 drivers with respect those who never sent hand-held messages while driving compared to those who sent them at least once per month while driving (see Figure 5-112 in Appendix A). Results revealed an odds ratio of 0.35 (p<0.01) between drivers who completed BDE and did not take a time discount and those who completed BDE and took a time discount. This implies that drivers who completed BDE but did not take a time discount had approximately 65% ((1-0.35)*100) decreased odds that they would send hand held messages at least once per month during their G1 licence stage compared to those drivers who completed BDE and took a time discount.

Results of a separate logistic regression analysis did not reveal any significant differences among the targeted subgroups of young drivers with respect to the frequency of sending hands-free messages while driving (i.e. never versus at least once) during the G1 licence

In an average month, during the G2 licence stage, 65.26% [61.37,68.95] of young drivers said they never sent hand-held messages; 11.46% [9.08,14.36] sent hand-held messages once per month; 12.59% [10.20,15.44] sent hand-held messages sometimes; 6.38% [4.58,8.82] sent hand-held messages often; and, 4.32% [2.90,6.41] said they sent hand-held messages very often while driving during their G2 licence stage (see Figure 5-113).

In an average month, during the G2 licence stage, 85.52% [82.30,88.24] of young drivers said they never sent hands-free messages; 5.45% [3.82,7.73] sent hands-free messages once per month; 5.33% [3.74,7.53] sent hands-free messages sometimes; 2.25% [1.27,3.93] sent hands-free messages often; and, 1.46% [0.71,2.98] said they sent hands-free messages very often while driving (see Figure 5-114 in Appendix A).

Comparing the frequency of texting while driving (hand-held and hands-free) during the G1 and G2 licence periods reveals that there is an increase in the frequency of this behaviour in young drivers once they have reached their G2 licence stage.
As with the G1 licence period, results of logistic regression analyses, controlling for differences in gender and age, revealed an odds ratio of 0.56 (p=0.01) for drivers who completed BDE and did not take a time discount compared to those who completed BDE and took a time discount when comparing the frequency (i.e., never versus at least once per month) of hand-held text messaging during the G2 licence period (see Figure 5-115 in Appendix A). These findings suggest that drivers who completed BDE and took a time discount wore likely to engage in hand-held text messaging compared to drivers who completed BDE without taking a time discount. Conversely, no significant variance was revealed among the three targeted subgroups of drivers with respect to the frequency of hands-free text messaging during the G2 licence period.

Number of stra	ata =	24		Number of obs	= 974
Number of PSUs	3 =	974		Population size	= 223239.08
				Design df	= 950
How often					
do/did you					
send					
hand-held					
messages			classif	cation	
during G1?	BDE w/	TD	BDE w/o TD	non-BDE	Tota
Never	84.	79	93.44	90.3	88.7
	[80.55,88.2	4] [88	.13,96.47]	[86.21,93.27]	[86.21,90.87
Once	7.1	82	.755	3.981	4.43
	[4.861,10.4	9] [.2	563,2.203]	[2.279,6.866]	[3.228,6.054
Sometimes	5.6	71	5.373	4.313	5.28
	12 612 8 78	F 1 F 0	EQC 10 021		
	[3.612,8./9	5] [2.	500,10.03]	[2.3/6,/./0/]	[3./52,/.395

.3285

.1061

100

1.409

0

100

[.484,4.029]

P = 0.0031

1.157

.3789

100

[.5922,2.247]

[.1317,1.085]

Often

Total

Key: column percentages

Very Often

Pearson:

1.614

.7419

100

Uncorrected chi2(8) = 25.2854 Design-based F(6.62, 6284.91)= 3.1561

[.6514,3.944] [.05503,1.935]

[.2357,2.309] [.01489,.7517]

[95% confidence intervals for column percentages]

Figure 5-110: How often do G1 drivers send hand-held messages while driving?

Number of str	ata = 20		Number of obs	= 853
Number of PSU	s = 853		Population size	= 199090.43
			Design df	= 833
How often				
do/did you				
send				
hand-held				
messages		classif	ication	
during G2?	BDE w/ TD	BDE w/o TD	non-BDE	Total
Never	61.53	70.66	65.78	65.26
	[56.54,66.29]	[62.49,77.69]	[57.69,73.04]	[61.37,68.95]
Once	10.56	12.88	11.29	11.46
	[7.716,14.28]	[8.277,19.51]	[7.221,17.23]	[9.078,14.36]
Sometimes	15.92	7.466	12.82	12.59
	[12.41,20.19]	[4.131,13.12]	[8.254,19.38]	[10.2,15.44]
Often	7.98	4.631	4.73	6.377
	[5.484,11.47]	[1.963,10.53]	[2.21,9.838]	[4.579,8.816]
Very Often	4.012	4.357	5.379	4.322
	[2.335,6.809]	[1.934,9.521]	[2.618,10.73]	[2.895,6.405]
Total	100	100	100	100
Kou: colum				
[95%	confidence interva	ls for column pe	ercentages]	
Pearson:				
Uncorrect	ed chi2(8)	= 17.1599		
Degion-ba	sed F(7.02. 5845.	42) = 1.4953	P = 0.1637	

Figure 5-113: How often do G2 drivers send hand-held messages while driving?

Making phone calls while driving. In an average month during the G1 licence stage, 90.43% [88.00,92.41] of young drivers said they never made hand-held calls; 5.98% [4.45,7.98] made hand-held calls once per month; 2.76% [1.72,4.41] made hand-held calls sometimes; 0.61% [0.27,1.35] made hand-held calls often; and, less than 1% [0.05,0.92] said they made hand-held calls very often while driving (see Figure 5-116).

In an average month during the G1 licence stage, 88.07% [85.29,90.39] of young drivers said they never made hands-free calls while driving; 6.13% [4.49,8.31] made hands-free calls once per month; 3.30% [2.14,5.06] made hands-free calls sometimes; 1.97% [1.11,3.48] made hands-free calls often; and, 0.53% [0.23,1.21] said they made hands-free calls very often (see Figure 5-117 in Appendix A).

Similar to the frequency of text messaging while driving, only a very small percentage of young drivers admitted to making phone calls while driving often or very often during their G1 licence period. Results of a logistic regression analysis, controlling for age and gender differences, revealed an odds ratio of 0.41 (p=0.03) for drivers who completed BDE and did not take a time discount and those who completed BDE and took a time discount with respect to the frequency (i.e., never versus at least once per month) of making handheld phone calls in the average month during the G1 licence period (see Figure 5-118 in Appendix A). This suggests that drivers who completed BDE without taking a time discount were 59% ((1-0.41)*100) less likely to engage in making handheld phone calls while driving compared to those who took a time discount.

As with sending hands-free text messaging, a logistic regression analysis found no significant differences among subgroups of young drivers with respect to the frequency of making hands-free calls during the G1 licence period.

In an average month, during the G2 licence stage, 74.98% [71.27,78.36] of young drivers said they never made hand-held calls; 9.67% [7.52,12.34] made hand-held calls once per month; 10.41% [8.13,13.24] made hand-held calls sometimes; 3.01% [1.83,4.92] made hand-held calls often; and, 1.92% [1.05,3.48] said they made hand-held calls very often while driving (see Figure 5-119).

In an average month during the G2 licence stage, 75.12% [71.34,78.55] of young drivers said they never made hands-free calls while driving; 8.34% [6.26,11.03] made hands-free calls once per month; 8.82% [6.78,11.40] made hands-free calls sometimes; 5.16% [3.57,7.41] made hands-free calls often; and, 2.55% [1.50,4.32] said they made hands-free calls very often (see Figure 5-120 in Appendix A).

Comparing the frequency of making phone calls while driving, for both hands-free and hand-held devices, during the G1 and G2 licence period indicates that a larger percentage of young drivers made phone calls while driving during the G2 licence period, compared to when they were driving during their G1 licence stage.

Results of a logistic regression analysis, comparing the frequency of making hand-held phone calls while driving during the G2 licence period (i.e. never versus at least once per month) revealed a significant difference between drivers who completed BDE and took a time discount and those who completed BDE and did not take a time discount (see Figure 5-121 in Appendix A). An odds ratio of 0.57 (p=0.03) suggests that drivers who completed BDE and do not take a time discount were 43% ((1-0.57)*100) less likely to engage in making hands-free calls while driving at least once per month during the G2 licence period, compared to those drivers who completed BDE and took a time discount.

Results of a second logistic regression analysis, evaluating the variance among young drivers with respect to the frequency of making hands-free calls while driving during the G2 licence period, did not reveal any significant differences.

Figure 5-116: How often do drivers make hand-held calls while driving during their G1 period?

Number of st:	rata = 24		Number of obs	= 974
Number of PS	Us = 974		Population size	= 223239.08
			Design df	= 950
How often				
do/did vou				
make				
hand-held				
calls		classif	ication	
during G1?	BDE w/ TD	BDE w/o TD	non-BDE	Total
Never	87.91	93.95	90.6	90.43
	[83.95,91]	[88.57,96.89]	[86.56,93.52]	[88,92.41]
Once	8.862	2.313	5.221	5.978
	[6.235,12.45]	[.7539,6.872]	[3.11,8.639]	[4.454,7.98]
	0.504	2 101	0 551	0.760
Sometimes	2.524	3.101	2.//1	2.762
	[1.2/9,4.92]	[1.183,7.882]	[1.3/8,5.49/]	[1./19,4.412]
Often	.4121	.6347	.9968	.6086
	[.09118,1.842]	[.1574,2.523]	[.2801,3.483]	[.2735,1.349]
Very Often	. 2928	0	. 412	. 2241
	[.04101,2.059]		[.05763,2.883]	[.05412,.9228]
matal.	1.0.0	100	100	100
IOLAI	100	100	100	100
Key: colu	mn percentages			
[95%	confidence interva	is for column pe	rcentages]	
Pearson:				
Uncorrect	ted chi2(8)	= 16.4407		
Design-ba	ased F(6.93, 6584.	22)= 1.6127	P = 0.1275	

Figure 5-119: How often do G2 drivers make hand-held calls while driving?

Number of stra	ata = 20		Number of obs	= 853
Number of PSUs	s = 853		Population size	= 199090.43
			Design df	= 833
How ofton				
do/did you				
make				
hand-held				
calls		classif	ication	
during G2?	BDE w/ TD	BDE w/o TD	non-BDE	Total
Never	72.72	79.5	72.31	74.98
	[67.86,77.1]	[71.57,85.65]	[64.47,78.98]	[71.27,78.36]
Once	11.44	6.356	11.22	9.669
	[8.482,15.27]	[3.187,12.28]	[6.983,17.54]	[7.524,12.34]
Sometimes	10.83	9.015	12.29	10.41
	[7.921,14.64]	[5.12,15.39]	[7.876,18.66]	[8.134,13.24]
Often	2.963	4.125	.4646	3.011
	[1.565,5.541]	[1.835,9.008]	[.06492,3.245]	[1.827,4.924]
Very Often	2.04	1.008	3.724	1.923
	[.9307,4.414]	[.14,6.886]	[1.611,8.375]	[1.054,3.483]
Total	100	100	100	100
Key: column	n percentages	la for column no	raontagogl	
1226 (John Tuence Three Va	is for corduin be	LCCHLAYES J	
Pearson:				
Uncorrecte	ed chi2(8)	= 14.3882		
Design-bas	sed F(6.60, 5500.	72)= 1.2055	P = 0.2975	

Listening to music. In an average month during the G1 licence stage, 10.59% [8.34,13.36] of young drivers said they never listened to music while driving; 9.04% [6.96,11.65] listened to music once per month; 17.26% [14.45,20.48] listened to music sometimes; 17.40% [14.71,20.47] listened to music often; and, 45.71% [42.03,49.45] said they listened to music very often (see Figure 5-122 in Appendix A).

With respect to subgroups of drivers, 52.32% [47.14,57.46] of drivers who completed BDE and took a time discount said that they listened to music very often and 20.31% [16.51,24.73] listened to music often while driving during their G1 licence stage. These percentages are larger than drivers who did not complete BDE, of whom 38.99% [32.62,45.77] said they listened to music very often and 15.63% [10.94,21.82] who said they listened to music often while driving during their G1 licence period. Similar differences were found between drivers who completed BDE and took a time discount and those who completed BDE and did not take a time discount. Results of a logistic regression analysis of this variable (see Figure 5-123 in Appendix A), controlling for gender and age differences, found an odds ratio of 0.48 (p<0.01) between drivers who completed BDE and took a time discount and drivers who completed BDE and did not take a time discount, meaning that drivers who completed BDE without taking a time discount had a 52% ((1-0.48)*100) decrease in the likelihood that they listened to music while driving often or very often during their G1 licence stage compared to drivers who completed BDE and took a time discount. A significant odds ratio of 0.59 (p<0.01) was also found between drivers who completed BDE and took a time discount and those who did not complete BDE. This implies that drivers who did not complete BDE had a 51% ((1-0.59)*100) decrease in the odds of listening to music often or very often during their G1 licence stage compared to drivers who completed BDE and took a time discount.

In an average month during the G2 licence stage, 6.41% [4.69,8.69] of young drivers said they never listened to music while driving; 3.01% [1.85,4.88] listened to music once per month; 7.35% [5.34,10.04] listened to music sometimes; 12.16% [9.67,15.19] listened to music often; and, 71.07% [67.12,74.71] said they listened to music very often while driving (see Figure 5-124 in Appendix A).

A logistic regression analysis revealed an odds ratio of 0.49 (p=0.01) between G2 drivers who completed BDE and took a time discount and those who completed BDE but did not take a time discount (see Figure 5-125 in Appendix A). Put differently, drivers who completed BDE without taking a time discount were found to have decreased odds that they listened to music while driving often or very often compared to drivers who completed BDE and took a time discount of approximately 51% ((1-0.49)*100). The regression analysis did not reveal any further significant differences among the subgroups of young drivers with respect to the frequency that they listened to music often while driving during their G2 licence period. Results also indicated, with an odds ratio of 1.67 (p=0.03) between female and male drivers, that females are 67% ((1.67-1)*100) more likely to listen to music often while driving compared to males during the G2 licence period.

TIRE

Driving while tired. In an average month during the G1 licence stage, 48.16% [44.38,51.96] of young drivers said that they never operated vehicles while tired; 29.94% [26.53,33.58] drove while tired once per month; 18.19% [15.5,21.23] drove while tired sometimes; 2.89% [1.91,4.35] drove often while tired; and, 0.82% [0.38,1.78] said they drove while tired very often (see Figure 5-126).

With respect to subgroups of drivers, an association was found using bivariate analysis between subgroups of drivers relating to how often they reported driving while tired. Approximately 40.84% [35.84,46.02] of drivers who completed BDE and took a time discount said that they never drove tired during their G1 licence stage, compared to 57.96% [51.02,64.60] of drivers who did not complete BDE. A logistic regression analysis confirmed the significance of this observation, revealing an odds ratio of 0.63 (p=0.01) for drivers who did not complete BDE compared to those who completed BDE and took a time discount (see Figure 5-127 in Appendix A). Additionally, an odds ratio of 0.64 (p=0.02) was found for drivers who completed BDE and did not take a time discount compared to those who completed BDE and took a time discount. This suggests that drivers who did not complete BDE and took a time discount were significantly less likely to drive while tired at least once per month during the G1 licence period, compared to those drivers who completed BDE and took a time discount.

In an average month during the G2 licence stage, 29.13% [25.50,33.05] of young drivers reported that they never operated vehicles while tired; 20.57% [17.51,24.00] drove while tired once per month; 31.74% [28.04,35.68] drove while tired sometimes; 13.35% [10.81,16.38] drove while tired often; and, 5.22% [3.71,7.29] said they drove while tired very often (see Figure 5-128). This suggests that young drivers drove while tired more frequently during their G2 licence period, compared to their G1 licence period.

Similar to the variance in fatigued driving behaviours found among subgroups during the G1 licence stage, a logistic regression analysis found a significant difference between the frequency of driving while tired (i.e. never versus at least once) between G2 drivers who did not complete BDE and those who completed BDE and took a time discount (see Figure 5-129 in Appendix A). An odds ratio of 0.59 (p=0.02) was found between drivers who did not complete BDE and those who completed BDE and took a time discount. This suggests that drivers who did not complete BDE were approximately 41% less likely to drive while tired at least once per month during the G2 licence period, compared to those drivers who completed BDE and took a time discount.

Figure 5-126: How often do young drivers operate vehicles while tired during G1?

Number of stra	ata = 24		Number of obs	= 974
Number of PSUs	s = 974		Population size Design df	= 223239.08 = 950
How often do/did you				
drive tired during G1?	BDE w/ TD	classif BDE w/o TD	ication non-BDE	Total
Never	40.84 [35.85,46.02]	52.24 [44.21,60.15]	57.96 [51.02,64.6]	48.16 [44.38,51.96]
Once	32.13 [27.49,37.15]	30.7 [23.81,38.57]	24.02 [18.51,30.56]	29.94 [26.53,33.58]
Sometimes	22.56 [18.53,27.17]	15.14 [10.38,21.56]	13.28 [9.32,18.58]	18.19 [15.5,21.23]
Often	3.292 [1.861,5.761]	1.548 [.4206,5.528]	4.045 [2.257,7.146]	2.892 [1.913,4.351]
Very Often	1.191 [.4185,3.339]	.3694 [.06069,2.213]	.6954 [.2185,2.191]	.8207 [.3765,1.78]
Total	100	100	100	100
Key: column [95% d	n percentages confidence interva	als for column pe	ercentages]	
Pearson: Uncorrecte	ed chi2(8)	= 27.3251		
Design-bas	sea r(/.15, 6/96	.83)= 2.625/	P = 0.0099	

Figure 5-128: How often do young drivers operate vehicles while tired during G2?

Number of stra Number of PSUs	ata = 20 s = 853		Number of obs Population size Design df	= 853 = 199090.43 = 833
How often				
do/did you				
drive tired		classif	ication	
during G2?	BDE w/ TD	BDE w/o TD	non-BDE	Total
Never	25.24	32.51	35.23	29.13
	[21.02,29.99]	[24.99,41.06]	[27.9,43.33]	[25.5,33.05]
Once	22.84	17.02	20.82	20.57
	[18.82,27.43]	[11.58,24.32]	[15.02,28.12]	[17.51,24]
Sometimes	31.31	35.54	24.02	31.74
	[26.68,36.35]	[28.05,43.82]	[17.85,31.49]	[28.04,35.68]
Often	14.86	11.82	11.52	13.35
	[11.48,19.03]	[7.394,18.36]	[7.263,17.79]	[10.81,16.38]
Very Often	5.743	3.108	8.414	5,215
	[3.715,8.778]	[1.182,7.922]	[4.759,14.45]	[3.709,7.286]
Total	100	100	100	100
Key. Column [95% d	confidence interva	ls for column pe	ercentages]	
Beargon:				
Incorrect:	d chi2(8)	- 19 1095		
Degion-ba	ad E(7 12 5020	- ±0.±085	D = 0 1219	
Design-Das	seu r(1.12, 3920.	11/- 1.0252	F = 0.1219	

Taking chances while driving. In an average month, during the G2 licence stage, 73.21% [69.40,76.69] of young drivers said they never took chances while driving just for the fun of it; 16.17% [13.34,19.47] took chances once per month; 7.52% [5.53,10.14] took chances sometimes; 2.19% [1.37,3.48] took chances often; and, 0.92% [0.45,1.90] said they took chances very often while driving, just for the fun of it (see Figure 5-130 in Appendix A).

Logistic regression analyses were conducted to determine if there was any significant variance among the three subgroups of young drivers with respect to the frequency (i.e., never versus at least once per month) that they took chances while driving during their G2 licence period. Results did not show any significant variance among these groups.

Teenage passengers. Results of the univariate analysis show the distribution of the frequencies that G2 drivers reported driving with one or more teenage passenger. Only 9.22% [7.13,11.86] of G2 drivers said they never drove with teenage passengers in the average month; 13.67% [11.02,16.83] drove with teenage passengers once per month; 29.83% [26.18,33.77] drove with teens sometimes; 25.10% [21.83,28.69] drove with teens often; and, 22.17% [19.00,25.71] said they drove with teenage passengers very often (see Figure 5-131 in Appendix A).

A logistic regression analysis was conducted to examine any differences among subgroups of young drivers to determine if certain groups were more or less likely to drive with one or more teenage passengers often or very often (see Figure 5-132 in Appendix A). An odds ratio of 0.52 (p<0.01) was found between drivers who completed BDE and took a time discount and drivers who completed BDE and did not take a time discount. Additionally, an odds ratio of 0.54 (p<0.01) was found between drivers who completed BDE and took a time discount and drivers who did not complete BDE. These results suggest that drivers who completed BDE without taking a time discount had a 48% ((1-0.52)*100) decrease in the likelihood that they would drive with at least one passenger in the vehicle often or very often during their G2 licence period, compared to drivers who complete BDE and take a time discount. Similarly, drivers who did not complete BDE had a 46% ((1-0.54)*100) decrease in the likelihood that they will drive with at least one passenger in the vehicle often or very often during their G2 licence period, compared to drivers who completed BDE and took a time discount. Ultimately, the implication here is that drivers who completed BDE and took a time discount drove with teenage passengers, increasing the risk of crashing, more frequently during their G2 licence period compared to drivers who completed BDE without taking a time discount and drivers who did not complete BDE.

Running red lights. Almost all G2 drivers (92.39% [89.74,94.4]) indicated that they never ran red lights in the average month. Among G2 drivers, 5.69% [4.00,8.04] said they ran red lights once per month; 1.56% [0.74,3.28] said they ran red lights sometimes; and, less than 1% said that they ran red lights often [0.02,1.08] or very often [0.03,1.43] (see Figure 5-133 in Appendix A).

Logistic regression analyses were conducted to determine if there were any significant variance among the three subgroups of young drivers with respect to the frequency (i.e., never versus at least once per month) that they admitted to running red lights during their G2 licence period. Results did not show any significant variance among these groups.

Passing other cars because it is exciting. In the average month, the majority of G2 drivers (86.50% [83.52,89.01]) said they never pass other cars because it is exciting. About 6.82% [5.06,9.14] of G2 drivers said they pass other cars once per month; 5.10% [3.54,7.30] said pass other cars sometimes; 0.89% [0.42,1.84] said they pass other cars often; and, 0.69% [0.30,1.62] admitted to passing other cars very often in the average month (see Figure 5-134 in Appendix A).

Logistic regression analyses, controlling for differences in gender, age, and demographic location (i.e., urban versus rural) were conducted to discern any variance among the three targeted subgroups of drivers with respect to whether or not they passed other cars because it was exciting never versus at least once per month during their G2 licence period (see Figure 5-135 in Appendix A). Demographic location was included as a control variable in this model due to the fact that its inclusion was found to affect the significance of the resulting odds ratios. Results showed an odds ratio of 2.19 (p=0.04) for drivers who did not complete BDE compared to those who completed BDE and did not take a time discount. This means that young G2 drivers who did not complete BDE had approximately 119% ((2.19-1)*100) increased odds that they would pass other cars because it was exciting at least once per month compared to drivers who completed BDE and did not take a time discount. As well, an odds ratio of 2.02 (p=0.04) was identified between drivers who had completed BDE and taken a time discount compared to those who had completed BDE but did not take a time discount. In other words, drivers who completed BDE and took a time discount had a 102% ((2.02-1)*100) increase in the odds that they would pass other cars because it was exciting at least once per month compared to drivers who completed BDE without taking a time discount.

Additionally, an odds ratio of 0.35 (p<0.01) was identified for females compared to male drivers, suggesting that females were significantly less likely to pass other cars because it was exciting at least once in the average month compared to young male drivers.

Drug-impaired driving. The majority of G2 drivers (93.76% [91.29,95.56]) said they never drove within two hours of consuming drugs, other than alcohol during the G2 licence stage. However, a small percentage of G2 drivers did admit to this behaviour. About 3.42% [2.14,5.43] of G2 drivers said they operated a vehicle after consuming drugs once per month; 2.09% [1.12,3.88] of drivers admitted to doing this sometimes; and, less than 1% exhibited this behaviour often or very often in the average month (see Figure 5-136).

Figure 5-136: How often do young drivers operate vehicles within 2 hours after consuming drugs other than alcohol?

Number of st	rata = 20		Number of obs	= 853
Number of PS	Us = 853		Population size	= 199090.43
			Design df	= 833
How often				
do drive				
within 2				
hours of				
consuming				
any drug		classif	ication	
during G2?	BDE w/ TD	BDE w/o TD	non-BDE	Total
Never	93.98	93.38	93.84	93.76
	[90.81,96.11]	[87.26,96.67]	[88.57,96.77]	[91.29,95.56]
Once	3 877	2 962	2 858	3 421
01100	[2 245 6 617]	[9887 8 534]	[1 049 7 55]	[2 138 5 431]
	[2.215,0.017]	[.9007,0.994]	[1.019,7.99]	[2.150,5.151]
Sometimes	1.2	3.345	2.309	2.09
	[.4216,3.365]	[1.283,8.434]	[.8452,6.149]	[1.117,3.878]
Often	.1326	.3126	.704	.2743
	[.04262,.4114]	[.04375,2.197]	[.09811,4.869]	[.09307,.8057]
Very Often	8071	0	2876	4577
very oreen	[.2353,2.731]	Ū	[.04027,2.023]	[.147,1.416]
Total	100	100	100	100
Key: colu	mn percentages			
[95%	confidence interv	als for column pe	rcentages]	
Pearson:				
Uncorrec	ted chi2(8)	= 8.2017		
Design-b	ased F(6.04 5035	36)= 0.9124	P = 0.4852	
DC219II-D	asca 1(0.04, 5055		1 = 0.4052	

Logistic regression analyses were conducted to determine if there was any significant variance among the three targeted subgroups of young drivers with respect to the frequency (i.e., never versus at least once per month) that they admitted to taking drugs, other than alcohol, within two hours of driving during their G2 licence period. Results did not show any significant variance among these groups.

Alcohol-impaired driving. The majority of G2 drivers (95.22% [93.06,96.73]) said they never drove within two hours of consuming any amount of alcohol. However, like with drug-impaired driving behaviours, a small percentage of G2 drivers did admit to driving after consuming alcohol. About 2.59% [1.56,4.27] of G2 drivers said they drove after consuming alcohol once per month; 1.49% [0.71,3.12] of G2s said they drove after consuming alcohol sometimes; 0.50% [0.17,1.48] said they drove after consuming alcohol sometimes; 0.50% [0.17,1.48] said they drove after consuming alcohol sometimes; 0.510% [0.17,1.48] said they drove after consuming alcohol sometimes; 0.50% [0.17,1.48] said they drove after consuming alcohol sometimes; 0.50% [0.17,1.48] said they drove after consuming alcohol sometimes; 0.50% [0.17,1.48] said they drove after consuming alcohol sometimes; 0.50% [0.17,1.48] said they drove after consuming alcohol sometimes; 0.50% [0.17,1.48] said they drove after consuming alcohol sometimes; 0.50% [0.17,1.48] said they drove after consuming alcohol sometimes; 0.50% [0.17,1.48] said they drove after consuming alcohol sometimes; 0.50% [0.17,1.48] said they drove after consuming alcohol sometimes; 0.50% [0.17,1.48] said they drove after consuming alcohol sometimes; 0.50% [0.17,1.48] said they drove after consuming alcohol sometimes; 0.50% [0.17,1.48] said they drove after consuming alcohol sometimes; 0.50% [0.17,1.48] said they drove after consuming alcohol sometimes; 0.50% [0.17,1.48] said they drove after consuming alcohol sometimes; 0.50% [0.17,1.48] said they drove after consuming alcohol sometimes; 0.50% [0.17,1.48] said they drove after consuming alcohol sometimes; 0.50% [0.17,1.48] said they drove after consuming alcohol sometimes; 0.50% [0.17,1.48] said they drove after consuming alcohol sometimes; 0.50% [0.17,1.48] said they drove after consuming alcohol sometimes; 0.50% [0.17,1.48] said they drove after consuming alcohol sometimes; 0.50% [0.17,1.48] said they drove after consum drove after consum drove

Figure 5-137: How often do G2 drivers operate vehicles within 2 hours after consuming any amount of alcohol?

Number of PSUs = 853 Population size = 199090.43 Design df = 833 How often do you drive within 2 hours of consuming any amount of alcohol classification	-
Design df = 833 How often do you drive within 2 hours of consuming any amount of alcohol classification	-
How often do you drive within 2 hours of consuming any amount of alcohol classification	_
How often do you drive within 2 hours of consuming any amount of alcohol classification	
do you drive within 2 hours of consuming any amount of alcohol classification	
drive within 2 hours of consuming any amount of alcohol classification	
within 2 hours of consuming any amount of alcohol classification	
hours of consuming any amount of alcohol classification	
consuming any amount of alcohol classification	
any amount of alcohol classification	
of alcohol classification	
during BDE w/ TD BDE w/o TD non-BDE Tota.	
Never 95.42 96.17 92.17 95.22	2
[92.39,97.28] [90.92,98.44] [86.19,95.69] [93.06,96.73	
Once 2.817 1.364 4.766 2.59	2
[1.45,5.4] [.2897,6.172] [2.187,10.07] [1.563,4.27	
Sometimes .6868 2.155 2.831 1.49	÷
[.1683,2.759] [.6255,7.154] [1.009,7.684] [.7057,3.12	
Often .6876 .3126 .2323 .495	3
[.1685,2.762] [.04375,2.197] [.03254,1.638] [.1645,1.481	
Verv Often .3926 0 0 .20	3
[.0549,2.75] [.02846,1.433	
Total 100 100 100 100)
Key: column percentages	-
[95% confidence intervals for column percentages]	
Pearson:	
Uncorrected chi2(8) = 10.6427	
Design-based $F(5.88, 4900.95) = 1.1045$ P = 0.3568	

Logistic regression analyses were conducted to determine if there was any significant variance among the three targeted subgroups of young drivers with respect to the frequency (i.e., never versus at least once per month) that they admitted to consuming alcohol within two hours of driving during their G2 licence period. Results did not show any significant variance among these groups.

Tailgating. The majority of G2 drivers (80.77% [77.37,83.76]) reported that they never drove especially close to other cars to let its driver know to get out of the way. Among G2 drivers, 10.88% [8.57,13.73] of G2 drivers tailgated once per month; 5.94% [4.25,8.25] of drivers tailgated sometimes; 1.45% [0.76,2.76] of drivers tailgated often; and, 0.96% [0.49,1.86] tailgated very often (see Figure 5-138 in Appendix A).

Logistic regression analyses were conducted to determine if there was any significant variance among the three targeted subgroups of young drivers with respect to the frequency (i.e., never versus at least once per month) that they admitted to driving especially close to the car in front to let its driver know to go faster or get out of the way during their G2 licence period (see Figure 5-139 in Appendix A). Results show an odds ratio of 0.50 (p=0.02) for drivers who completed BDE and did not take a time discount, compared to those who completed BDE and took a time discount. This means that drivers

who completed BDE without taking a time discount were 50% ((1-0.50)*100) less likely to tailgate at least once per month compared to drivers who completed BDE and took a time discount during the G2 licence period. This finding suggests that young drivers who decided to take a time discount were more likely to engage in potentially risky or aggressive behaviours, such as tailgating, compared to those drivers who completed BDE without taking a time discount.

5.1.14 What was the primary reason for taking a BDE course or not taking a BDE course?

Various reasons for deciding to complete or not complete a BDE course are explored in this subsection. Participants were asked to choose, from a specified list, a reason for deciding to complete BDE. This list of response options included the following as reasons for deciding to complete BDE: to qualify for an insurance discount; to help pass the G1 road test; to make you a safer or more skilled driver; to get your G2 licence sooner; your parents wanted you to; to be able to get to activities such as work, school, or sports on your own; and, other.

Participants who did not complete BDE were asked why they choose not to complete the BDE course. The response options for this item included: too expensive; not available where you live; not necessary-others could teach you just as well; did not have time to take the course; did not have access to a vehicle; enrolled in the course but never completed it; parents/guardians did not allow you to take it; not interested in getting a time discount (i.e., reducing the amount of time with a G1 licence); planning on taking the course in the future; currently taking the course; and, other.

Results of a bivariate analysis indicated that the primary reason for completing BDE, identified by 34.11% [30.04,38.42] of young drivers who completed BDE, was to make themselves a safer or more skilled driver (see Figure 5-140). As well, 30.64% [26.62,34.98] of drivers who completed BDE said that the most important reason for deciding to take a BDE course was to qualify for an insurance discount. Approximately 18.18% [15.29,21.48] of drivers who completed BDE said that they decided to do so to get their G2 licence sooner, 4.39% [2.87,6.66] said it was to help pass the G1 road test, 4.22% [2.65,6.66] said they decided to take BDE because their parents wanted them to; and 8.31% [6.22,11.03] indicated that they completed BDE to be able to get to activities such as work, school, or sports on their own. These results provide evidence to support the hypothesis that if a large proportion of BDE drivers completed the course because they believed it would make them a safer driver, especially if course completion allowed them to obtain a G2 licence early, they may have ended up believing that they were a better driver, even if they were not safer or more skilled in reality compared to other young drivers.

Figure 5-140: What was	the most imp	oortant reason f	or decidina t	to take a BD	E course?
inguic 5 into milat mas	the most ma		or acciantly a		

Number of strata =	16		Number of obs	=	74
Number of PSUs =	746		Population si	ze = 1796	63.5
			Design df	=	73
				· · · · · · · · · · · · · · · · · · ·	
What was the single mos	st			-	
important reason for ta	aking BDE?	percentages	lb	ub	
to qualify for insura	ance disc,	30.64	26.62	34.98	
to help pass the gl	road test	4.387	2.865	6.662	
to be a safer/skil	led driver	34.11	30.04	38.42	
to get your g2 lice	nce sooner	18.18	15.29	21.48	
your parents wan	ted you to	4.221	2.648	6.663	
to be able to get to a	activities	8.312	6.219	11.03	
	other	.1573	.02204	1.113	
	Total	100			
Key: percentages =	cell perc	entages			
lb =	lower 95%	confidence bo	ounds for cell	percentages	
ub =	upper 95%	confidence bo	ounds for cell	percentages	

The primary reason, identified by young drivers who did not complete BDE, for deciding not to complete the course was that they believed it was too expensive (see Figure 5-141). Approximately 34.22% [27.98,41.07] of young drivers who did not complete BDE, did so because it was too expensive; 18.22% [13.95,23.46] did not complete BDE because they believed it was not necessary, and that others could teach them to drive just as well; 16.65% [11.71,23.11] did not complete the course because they were planning on taking it in the future (88.30% [73.87,95.27] of these respondents were G1 drivers); 13.03% [8.70,19.07] indicated that they did not have time to take the course; and, 6.28% [3.48,11.08] indicated that they were not interested in taking a time discount.

Figure 5-141: What was	the most important reason	for deciding not to t	ake a BDE course?
	•		

Number of strata = 8	N	umber of obs	=	246
Number of PSUs = 246	P	opulation si	ze = 48020	.369
	D	esign df	=	238
What was the main reason that			· · · · · · · · · · · · · · · · · · ·	
you did not complete BDE?	percentages	lb	ub	
too expensive	34.22	27.98	41.07	
not available where you live	1.235	.4779	3.151	
not necessary	18.22	13.95	23.46	
did not have time	13.03	8.698	19.07	
no access to a vehicle	1.106	.2249	5.26	
enrolled in BDE, never completed	.806	.1814	3.507	
parents did not allow it	1.683	.5215	5.291	
not interested in time discount	6.277	3.475	11.08	
plan to take BDE later	16.65	11.71	23.11	
currently taking the course	4.704	2.344	9.216	
other	2.065	.7834	5.333	
Total	100			
Key: percentages = cell perce	entages			
lb = lower 95%	confidence boun	ds for cell	percentages	
ub = upper 95%	confidence boun	ds for cell	percentages	

5.1.15 How do young drivers perceive the usefulness of the Beginner Driver Education (BDE) program?

The Young Driver Survey questionnaire asked participants, who had completed BDE, to indicate whether or not they felt that BDE improved their driving skills and knowledge of road rules and safety. They were also asked which component of the BDE program they found most useful.

Results of the univariate analysis showed that young drivers perceived the BDE program as having a positive impact on their driving abilities (see Figure 5-142 & 5-143 in Appendix A). The vast majority of young drivers who completed BDE (90.47% [87.33,92.9]) believed that BDE improved their driving skills. Similarly, 95.52% [93.04,97.15] of young drivers who completed BDE believed that it enhanced their knowledge of road rules and safety. Once again, these results add to the hypothesis that completing BDE increases the self-confidence of young drivers with respect to their skills and knowledge of driving.

Among drivers who completed BDE, 89.94% [86.95,92.31] believed that in-vehicle instruction was the most useful component of the BDE program; 9.62% [7.33,12.54] thought that classroom instruction was the most useful; and, less than 1% [0.09,1.98] believed that additional instruction methods (e.g., online learning) were the most useful (see Figure 5-144).

Number of strata	a =	16	Numbe	r of obs	=	745
Number of PSUs	=	745	Population size		= 179	640.87
			Desig	n df	=	729
What part of the course was most during Gl stage?	e BDE useful ?	percentages	lb	ub		
classroom inst	ruction	9.624	7.33	12.54		
in-vehicle inst	ruction	89.94	86.95	92.31		
additional inst	ruction	.4316	.09291	1.981		
	Total	100				
Key: percenta	ages =	cell percentage	s			
lb	=	lower 95% confi	dence bounds f	or cell per	centages	
ub	= -	upper 95% confi	dence bounds f	or cell per	centages	

Figure 5-144: What part of BDE do young drivers find most useful?

5.1.16 How often do young drivers take driving lessons outside of Beginner Driver Education (BDE)?

Since BDE is not the only available driver education program in Ontario, researchers were also interested in investigating the percentage of young drivers who took driving lessons from a professional instructor outside of BDE.

Results indicate that about 89.41% [87.04,91.38] of young drivers did not take driving lessons outside of BDE (see Figure 5-145 in Appendix A). However, within subgroups of young drivers, a much larger percentage drivers who did not complete BDE (21.88% [17.02,27.68]) took driving lessons outside of BDE compared to those who completed BDE with and without a time discount (7.70% [5.39,10.89] and 7.36% [4.13,12.77], respectively).

A logistic regression analysis confirmed the significance of this finding (see Figure 5-146 in Appendix A). The analysis determined the difference between the three targeted subgroups of young drivers with respect to whether or not they had taken driving lessons outside of Beginner Driver Education. An odds ratio of 0.19 (p<0.01) was found between drivers who did not complete BDE and those who completed BDE and did not take a time discount. Similarly, an odds ratio of 0.21 (p<0.01) was found between drivers who did not completed BDE and took a time discount. Simply put, drivers who completed BDE without taking a time discount had 81% ((1-0.19)*100) decreased odds that they will take driving lessons outside of BDE compared to drivers who did not complete BDE. Similarly, drivers who completed BDE and took a time discount have 79% ((1-0.21)*100) decreased odds compared to drivers who did not complete BDE.

5.1.17 How often do young drivers utilize public transportation? How much access? Feasibility of using public transportation?

The following subsection explores the convenience and level of public transportation that young drivers use. It also explores the frequency of public transportation use among young drivers.

In this analysis, distinction is made between urban and rural categories of participants within the young driver population. Participants were asked to rate the convenience of the public transportation systems in their area, as well as the frequency of use of various public transportation options.

Convenience of public transportation. Overall, among those participants who indicated that public transportation options were available in the area that they lived, 20.81% [17.36,24.74] indicated that the public transportation system was very convenient; 27.54% [23.61,31.86] said it was convenient; 33.44% [29.31,37.84] said it was somewhat convenient; 14.14% [11.33,17.51] said it was not convenient; and, 4.07% [2.69,6.10] said they did not know how convenient the public transportation systems in their area are to use (see Figure 5-147).

Differences between groups of urban and rural populations were identified in the subsequent analyses. Within the urban driver population, where transportation is available, 12.16% [9.30,15.76] said that it was not convenient, compared to 37.64% [27.64,48.83] of rural drivers. A logistic regression analysis was conducted to confirm the significance of this finding, while controlling for differences in gender and age (see Figure 5-148 in Appendix A). An odds ratio of 4.90 (p<0.01) was found between rural and urban drivers with respect to the convenience (i.e., Not convenient versus Convenient) of the

TIRF

public transportation system in their area. In other words, not surprisingly, young drivers who live in urban regions had a 390% ((4.90-1)*100) increase in the odds that they would report that the public transportation systems are at least somewhat convenient, compared to rural drivers.

Figure 5-147: How convenient are the public transportation systems in young driv	ver's
area?	

Number of strata =	24	24 Number of obs		= 660
Number of PSUs =	660	Population size		= 176094.92
		Desi	gn df	= 636
How convenient are				
the public				
transportation				
systems in your area		postalcode		
to use?	rural	urban	Total	
	10.62			
very convenient	10.63	21.67	20.81	
	[5.///,10./4]	[1/.9/,25.9]	[1/.30,24./4]	
convenient	11.8	28.87	27.54	
	[6.055,21.73]	[24.64,33.49]	[23.61,31.86]	
somewhat convenient	31.98	33.56	33.44	
	[22.75,42.88]	[29.17,38.26]	[29.31,37.84]	
not convenient at al	37 64	12 16	14 14	
not convenient at at	[27 64 48 83]	[9 295 15 76]	[11 33 17 51]	
	[2,.01,10.05]	[9.299,19.70]	[11.55,17.51]	
don't know / n/a	7.948	3.738	4.066	
	[3.782,15.94]	[2.34,5.922]	[2.691,6.098]	
Total	100	100	100	
Kev: column percent	ages			
[95% confidence	ce intervals for	column percent	ages]	
Pearson:				
Uncorrected chi2	2(4) =	31.6217		
Design-based F(3	.92, 2495.70)=	11.0644 P	= 0.0000	

Frequency of public transportation use. A univariate analysis was conducted to evaluate the frequency that young drivers, who said they had available public transportation options in their area, made use of it in the average month (see Figure 5-149 in Appendix A). Overall, 17.17% [13.89,21.05] of drivers took public transportation daily; 16.98% [13.81,20.7] took public transportation several times per week; 12.37% [9.63,15.75] took it once per week; 18.67% [15.34,22.53] took it once per month; and, 34.80% [30.75,39.09] never took public transportation in the average month.

With regards to demographic information, a far greater percentage of rural drivers (66.81% [55.71,76.30]) said they never took public transportation, compared to 32.09% [27.82,36.69] of urban drivers. Similarly, 18.04% [14.5,22.22] of young urban drivers said they took public transportation daily, compared to 6.91% [3.33,13.8] of rural drivers. Results of a logistic regression analysis, controlling for gender and age factors, confirmed the significance of this finding, with an odds ratio of 3.06 (p<0.01) for urban drivers

compared to rural drivers (see Figure 5-150 in Appendix A). Additionally, an odds ratio of 0.65 (p=0.03) was revealed between young female drivers and young male drivers, indicating that females were 35% ((1-0.65)*100) less likely to use public transportation at least once per week compared to male drivers.

Carpooling. When asked how often young drivers received rides from other drivers in an average month, 11.37% [9.18,13.99] of young drivers said they got rides daily; 30.59% [27.12,34.29] said they carpool several times per week; 30.97% [27.46,34.72] said they carpool once per week; 20.16% [17.27,23.39] once per month; and, 6.91% [5.16, 9.19] said they never got rides from others in an average month (see Figure 5-151).

Results of the bivariate frequency analysis found that a greater percentage of urban drivers, compared to young rural drivers got rides from other drivers at least once per week. A logistic regression analysis, controlling for gender and age factors, confirmed the significance of this finding, with an odds ratio of 1.56 (p=0.01) for urban drivers compared to rural drivers (see Figure 5-152 in Appendix A). In other words, young drivers who live in urban areas carpooled with other drivers more often compared to those who reside in rural areas.

Number of strata =	24	Number of	obs =	959
Number of PSUs =	959	Populatio	on size = 220	0441.20
		Design df	=	935
How often do vou get a				
ride from someone else,		postalcode		
nonthly?	rural	urban	Total	
daily	8.463	12.01	11.37	
	[5.797,12.2]	[9.449,15.16]	[9.183,13.99]	
several times per week	28.45	31.07	30.59	
	[23.17,34.38]	[27.03,35.42]	[27.12,34.29]	
once per week	29.19	31.37	30.97	
	[23.92,35.09]	[27.27,35.79]	[27.46,34.72]	
once per month	24.15	19.27	20.16	
	[19.2,29.89]	[15.97,23.06]	[17.27,23.39]	
never	9.754	6.275	6.909	
	[6.669,14.05]	[4.334,9.004]	[5.163,9.188]	
Total	100	100	100	
Key: column percentages				
[95% confidence int	cervals for colu	mn percentages]		
Pearson:				
Uncorrected chi2(4)	= 6.3	157		
Design-based F(3.95, 3	3690.43)= 1.8	210 P = 0.1	228	

Figure 5-151: How often do young drivers get rides from other drivers monthly?

Walking. Almost one-third 30.62% [27.19,34.28] of young drivers said they walked as a mode of transportation daily; 24.52% [21.25,28.10] walked several times per week; 11.39%

[9.14,14.11] walked once per week; 10.02% [7.93,12.58] walked once per month; and, 23.46% [20.50,26.70] said they never walked as a mode of transportation in an average month (see Figure 5-153 in Appendix A).

A logistic regression analysis was performed to evaluate the differences between rural and urban drivers with respect to the frequency that they walked as a mode of transportation (i.e., At least once per week versus Less than once per week) (see Figure 5-154 in Appendix A). An odds ratio of 2.74 (p<0.01) was found, indicating that urban drivers had a 174% ((2.74-1)*100) increase in the likelihood that they will walk as a mode of transportation at least once per week in the average month, compared to rural drivers.

Cycling. When asked how often young drivers cycled as a mode of transportation in an average month, 1.79% [0.94,3.37] of young drivers said they cycled daily; 7.41% [5.51,9.90] said they cycled several times per week; 6.56% [4.89,8.77] said they cycled once per week; 12.42% [9.98,15.35] said they cycled once per month; and, 71.82% [68.1,75.26] reported that they never cycled as a mode of transportation in an average month (see Figure 5-155 in Appendix A).

The results of a logistic regression analysis did not show any significant differences in the frequency of cycling as a mode of transportation (i.e., At least once per week versus Less than once per week) between urban and rural drivers.

5.1.18 Are young drivers aware of the Ministry's various public education tools targeted at young drivers (i.e., GLS videos)?

Participants were also asked about the exposure they had to various public education tools developed by the Ministry of Transportation, Ontario. Respondents were asked whether they used these tools during various stages of the licensing process, as well as whether or not they had seen the educational videos developed for young and novice drivers.

The majority of young drivers (62.71% [58.87,66.39]) visited the Ministry of Transportation, Ontario's website for licensing information before obtaining their G1 licence (see Figure 5-156 in Appendix A).

An examination of the percentage of young drivers that visited MTO's website for information on required documentation showed that the majority of young drivers (64.00% [60.26,67.58]) did visit the website before obtaining their G1 licence (see Figure 5-157 in Appendix A).

Approximately half of young drivers (50.75% [46.88,54.61]) said that they had not seen any of the available videos for young drivers listed on MTO's website entitled, "Getting your driver's licence" (see Figure 5-158). Almost one-quarter (23.64% [20.47,27.14]) of drivers said they had seen them, and 25.61% [22.31,29.21] said they did not know whether or not they had seen them (see Figure 5-151 in Appendix A).

After passing the G1 road test, and obtaining their G2 licence, the majority of young drivers (77.31% [73.66,80.59]) did not visit MTO's website. Additionally, about 14.37%

[11.70,17.53] of drivers did visit the website after obtaining their G2 licence and 8.32% [6.32,10.87] indicated that they did not know (see Figure 5-159 in Appendix A).

5.2 Summary and Discussion

The results of this study, relying on univariate, bivariate and logistic regression analyses of data obtained from the Young Driver Survey questionnaire, shed light on the characteristics and behaviours of young drivers in Ontario, as a whole. As well, behavioral and characteristic differences were found among young drivers in three targeted subgroups: those who completed BDE and took a time discount (BDE w/ TD); those who completed BDE and did not take a time discount (BDE w/o TD); and those who did not complete BDE (Non-BDE). Important differences were also seen with respect to other factors such as, demographic location (i.e., urban or rural residence), gender, and licence class (i.e., G1 or G2 licensed drivers).

Table 5.2.1 summarizes the significant findings from the logistic regression analyses explored in previous sections with respect to variance between the three targeted subgroups of young drivers.

Table 5.2.1 Summary of significant differences between targeted subgroups of

young drivers						
Behaviour	BDE w/ TD significantly more likely than BDE w/o TD	BDE w/ TD significantly more likely than non-BDE	BDE w/o TD significantly more likely than non-BDE	Non-BDE significantly more likely than BDE w/ TD	Non-BDE significantly more likely than BDE w/o TD	
Driving >100 km/month (G1 drivers only)			x			
Driving to school		х				
Driving to work		Х				
Driving to practice driving		х				
Driving just to go for a drive				х		
Have unlimited use of a motor vehicle	x	х				
Driving on 400-series highways (G2 licence period)	x	х				
Receive more than 10 hours of supervised driving practice (G1 licence period)		х				

Table 5.2.1 Summary of significant differences between targeted subgroups of young drivers

young unvers	l		l		
Behaviour	BDE w/ TD significantly more likely than BDE w/o TD	BDE w/ TD significantly more likely than non-BDE	BDE w/o TD significantly more likely than non-BDE	Non-BDE significantly more likely than BDE w/ TD	Non-BDE significantly more likely than BDE w/o TD
Talking with parents					
about traffic safety				V	V
and the rules of the				~	Χ
road					
Talking with parents					
about drinking and	Х				
driving					
Talking with parents					
about texting and	Х				
driving					
Driving during rush					
hour	Х				
(G1 licence period)					
Driving during rush					
hour	Х				
(G2 licence period)					
Driving at night	×				x
(G1 licence period)	~				Х
Driving at night	x	x			
(G2 licence period)	~	~			
Driving in adverse					
weather	X				Х
(G1 licence period)					
Rating their ability to					
pass other cars after	x				
completing BDE as					
good or very good					
Speeding	х	Х			
(GT licence period)					
Speeding		Х			
(G2 licence period)					
Sending hand-heid	v				
(C1 licence period)	^				
(GT licence period)					
	v				
(G2 licence period)	^				
Making hand-held					
calle	×				
(G1 licence period)					
Making hand-held					
calls	x				
(G2 licence period)					

Table 5.2.1 Summary of significant differences between targeted subgroups of young drivers							
Behaviour	BDE w/ TD significantly more likely than BDE w/o TD	BDE w/ TD significantly more likely than non-BDE	BDE w/o TD significantly more likely than non-BDE	Non-BDE significantly more likely than BDE w/ TD	Non-BDE significantly more likely than BDE w/o TD		
Listening to music (G1 licence period)	х	х					
Listening to music (G2 licence period)	х						
Driving tired (G1 licence period)	х	Х					
Driving tired (G2 licence period)		Х					
Driving with teenage passengers (G2 licence period)	х	Х					
Passing other cars because it is exciting (G2 licence period)	Х				Х		
Tailgating (G2 licence period)	Х						
Note: No reported instances of "BDE w/o TD significantly more likely than BDE w/ TD" were found.							

Drivers who completed BDE and took a time discount, were found to be significantly more likely to: have unlimited use of a motor vehicle; drive on 400-series highways during the G2 licence period; drive at night during the G2 licence period; speed during the G1 licence period; listen to music while driving during the G1 licence period; drive while tired during the G1 licence period; and, drive with at least one teenage passenger during the G2 licence period compared to young drivers who completed BDE without taking a time discount and drivers who did not complete BDE. The greater frequency of certain driving behaviours indicate that there is something characteristic among drivers who completed BDE and took a time discount that set them apart behaviorally from drivers who completed BDE without taking a time discount and those who did not complete BDE.

Furthermore, young drivers who completed BDE and took a time discount were shown to be significantly more likely than drivers who also completed BDE but did not take a time discount to: drive during rush hour during the G1 and G2 licence period; drive at night during the G1 licence period; drive in adverse weather conditions during the G1 licence period; rate their ability to pass other cars after completing BDE as good or very good; send hand-held text messages while driving during the G1 and G2 licence periods; make hand-held phone calls while driving during the G1 and G2 licence period; listen to music while driving during the G2 licence period; pass other cars because it was exciting during the G2 licence period; and, tailgate other drivers during the G2 licence period. Again, this suggests that there is something characteristically different about drivers who complete BDE and take a time discount compared to those who complete BDE and do not take a

time discount that causes them to take more risks while driving. As well, the fact that there were very few statistically significant differences found between drivers who completed BDE without taking a time discount and those who did not complete BDE, implies that the BDE program itself is not greatly influencing the likelihood that young drivers will engage in these types of risky behaviours. Rather, it supports the hypothesis that taking a time discount is positively associated with increased risk taking behaviours while driving. However, it is unknown whether the act of taking a time discount leads to increased confidence among young drivers and ultimately to risk taking behaviours, or if drivers with pre-disposed risk taking behaviours are more likely to take a time discount.

Similarly, drivers who completed BDE and took a time discount were also significantly more likely than drivers who did not complete BDE to: drive to school; drive to work; drive to practice their driving; receive more than 10 hours of supervised driving practice during the G1 licence period; speed during the G2 licence period; and, drive tired during the G2 licence period. It makes sense that young drivers, who completed BDE and took a time discount, might have done so to be able drive to and from certain activities independently sooner than if they had not completed BDE. In other words, it is possible that the need to be able to drive independently, to get themselves to school or work, prompted some young drivers to completed BDE and took a time discount in the first place. The finding that drivers who completed BDE and took a time discount were more likely to speed and drive fatigued than those who did not complete BDE also provides further evidence that they are more likely to take risks.

Results of a univariate analysis examined the reasons that young drivers chose to complete BDE or not to complete BDE. The top two reasons that young drivers decided to complete BDE were to make them a safer or more skilled driver and to qualify for an insurance discount. The third most important reason that young drivers decided to complete BDE was to get their G2 licence sooner (i.e., take a time discount). Counter to that notion, the main reason that young drivers decided not to complete BDE was that they believed it was too expensive. As well, the vast majority of drivers who did complete BDE (over 90%) believed that BDE improved their driving skills and enhanced their knowledge of road rules and safety. This adds evidence to the hypothesis that young drivers who complete BDE believe that their driving skills and knowledge have been significantly improved as a result of having completed the course.

Logistic regression analyses were also conducted to discern variances in how groups of young drivers rated their driving abilities and knowledge, while controlling for differences in gender and age factors within the population that might contribute to the outcomes. Results provide evidence to support the hypothesis that drivers who complete BDE have increased confidence in their skills compared to other drivers. Across all of the following driving abilities: merging into traffic safely; making left turns at intersections; passing other cars safely; knowing who has the right of way on the road; and, vehicle handling, drivers who completed BDE (i.e., with and without taking a time discount) consistently

TIRE

rated their driving skills and knowledge significantly higher than those who did not complete BDE. Although the results of self-report measures, like those in this study, cannot tell us how skilled drivers are in reality, these results do tell us that drivers who complete BDE are significantly more confident in their abilities compared to drivers who do not complete BDE. Further studies, comparing these results to those using objective measures of driving skills derived from on-road tests or naturalistic driving studies and the crash rates of young drivers in each of the targeted subgroups would likely help create a more cohesive understanding of how BDE impacts the perceptions and abilities of young drivers. This would help to identify whether young drivers have a realistic self-understanding of their skill level in relation to their actual driving abilities, in order to ensure that the BDE program is in fact improving the perceptions and abilities of young drivers, or whether it may actually be producing over-confidence in novice drivers.

Very few results showed statistically significant differences between drivers who completed BDE without taking a time discount and those drivers who did not complete BDE, indicating that the behaviours and characteristics of these two subgroups of drivers are not significantly different overall. In fact, the vast majority of results revealed that young drivers who completed BDE and took a time discount were significantly more likely to engage in various risky driving behaviours (e.g., speeding, using their phones while driving, driving with teen passengers) compared to other young drivers. Young drivers who completed BDE and took a time discount were also found to be significantly more likely to have unlimited use of a motor vehicle compared to other young drivers. These two factors combined create a dangerous situation for young teens that are driving independently for the first time, sooner than they would have otherwise been doing due to the time discount.

On a more positive note, results showed that young drivers who completed BDE and took a time discount were also significantly more likely to talk to their parents about risky driving behaviours like drinking and driving and texting and driving compared to drivers who completed BDE without taking a time discount. This suggests that the parents of young drivers, who complete BDE and take a time discount, may be aware or more wary of the risks associated with newly licensed drivers, and feel the need to speak with their child about such risks. It may also suggest that parents recognize that their teens are more likely to engage in these types of behaviours.

As indicated previously, drivers who completed BDE and took a time discount were more likely than drivers who did not complete BDE to receive more than 10 hours of supervised driving practice during the G1 licence period. A greater percentage of drivers who completed BDE without taking a time discount also received more than 10 hours of supervised driving practice compared to drivers who did not complete BDE. However, in this case, the difference was not found to be statistically significant. This is an encouraging finding because it suggests that drivers who completed BDE and took a time discount were practicing their driving skills before driving by themselves for the first time. It may also

imply that the parents of young drivers who took a time discount were more likely to encourage their teens to practice their driving, compared to the parents of teens who do not complete BDE. Conversely, it could also suggest that drivers who are interested in taking a time discount may practice more frequently solely so that they can pass the road test to get their G2 licence sooner. Moreover, drivers who did not complete BDE were found to be significantly more likely than drivers who completed BDE and took a time discount to drive just to go for a drive. Contrary to driving for other purposes (e.g., to get to and from school), driving just to go for a drive, or just for fun, was the only driving purpose which non-BDE drivers reported engaging in significantly more frequently than other drivers. This suggests that drivers who completed BDE and took a time discount, often did so in order to accomplish specific driving goals, like being able to get to school or work, as opposed to drivers who did not complete BDE.

Outcomes of a univariate analysis also showed that the most common type of vehicle driven by young drivers, reported by just over half of young drivers, was a car. Sport utility vehicles (SUVs) and vans/minivans were also commonly operated by young drivers. Results also showed that many young drivers, about 47%, had access to two vehicles to drive, and about 23% had access to three or more vehicles. Only approximately three percent of licensed G1 and G2 drivers did not have access to a vehicle. As well, approximately 10% of young drivers owned their own vehicles, with about 87% of the vehicles driven by young drivers being owned by the parents or guardian of the young driver.

Fathers and mothers were found to be the primary supervising drivers to the majority of drivers during their G1 licence stage, with fathers supervising a slightly larger percentage than mothers. Following parental supervisors, driving instructors were cited as the primary supervising drivers to approximately 10% of the young driver population. Additionally, results found that almost half (45%) of all G2 drivers received additional supervised driving practice after they obtained their G2 licence. This is an extremely encouraging finding because it suggests that parents were highly involved in the process of helping their teens learn how to drive. It also reveals that many parents and their teens understood the importance of continuing to receive supervised driving practice during the G2 licence period.

For the most part, as is to be expected when moving through the graduated licensing process, a larger percentage of G2 drivers experienced higher-risk traffic situations (i.e., night-time driving, hazardous weather conditions, and heavy traffic) compared to driving during the G1 licence period. Approximately half of G2 drivers drove during rush hour often or very often in the average month. The majority (75%) of G2 drivers drove at night often or very often in the average month, and approximately 43% drove in adverse weather conditions often or very often. These results suggest that young G2 drivers had increased exposure to these higher-risk traffic situations, compared to when they were driving solely under supervision during the G1 licence period. While this is to be expected, such increases in driving frequency during the G2 licence period suggests that many young

TIRF.

drivers were only exposed to higher-risk traffic situations once they began to be able to drive independently with their G2 licence, as opposed to under supervision with a G1 licence.

Results of several univariate analyses revealed differences in the percentage of drivers who engaged in certain risky driving behaviours with respect to their stage of licensing. Furthermore, outcomes of the survey showed that a larger percentage of young drivers, during their G2 licence period, engaged in speeding; texting while driving (hand-held and hands-free); making phone calls while driving (hand-held and hands-free); listening to music; and, driving while tired, compared to when they were driving with a G1 licence. This increase in risky behaviour after entering the G2 licence period may be attributed to the lessened amount of supervision while driving in the G2 licence stage. If young drivers were not being monitored by a parent in the vehicle, and especially if they had teen passengers in the car, they may have consequently been more willing to take risks while driving during the G2 period.

Results showed that, as a whole, the majority of G2 licensed drivers did not often engage in certain risky behaviours during the G2 licence stage. Only a small percentage of G2 drivers, less than 5%, said that they took chances while driving for the fun of it, ran red lights, passed other cars because it was exciting, drove within two hours of consuming any type of drug or alcohol, or drove especially close to other cars to let its driver know to get out of the way often or very often. This indicates that young drivers perceived these behaviours to be quite risky while driving. On the other hand, almost half (47%) of G2 drivers said that they drove with teenage passengers often or very often, implying that young drivers perceived this behaviour to be less of a risk to their safety even though previous studies have established that teenage passengers are associated with elevated crash risks for teen drivers.

Another surprising, as well as concerning finding from the analyses was the high percentage of young drivers, about 23%, who reported driving on 400-series highways during their G1 licence period. As well, about the same percentage of young drivers, just under 23%, admitted to driving unsupervised during the G1 licence period. Results of a logistic regression analysis revealed these percentages were not a coincidence, and that the same drivers who reported driving on 400-series highways during the G1 licence period, were also likely to report driving unsupervised during this period. This ultimately means that almost one-quarter of young drivers in Ontario disregarded the restrictions of the G1 licence stage at some point, suggesting the need to encourage better parental monitoring and enforcement of GDL rules to prevent these behaviours.

Gender differences were also noted for certain behaviours among young drivers. Males were found to be more likely than females to: drive on 400-series highways during the G2 licence period; drive at night during the G1 licence period; drive in adverse weather conditions during the G1 licence period; use public transit; and, rate their merging, passing, and left turning abilities as good or very good before enrolling in BDE.

TIRF

Conversely, females were found to be more likely than males to drive to work and to listen to music during the G2 licence period.

The use of public transportation within the young driver population varied according to several variables. Overall, approximately 21% of young drivers with available public transportation indicated that the public transportation systems were very convenient in their area. Urban drivers showed increased odds that they would perceive the transportation systems in their area to be at least somewhat convenient compared to rural drivers. Along the same lines, a larger percentage of urban drivers (about 18%) took public transportation daily compared to rural drivers (about 7%). Additionally, just over 70% of young drivers indicated that they got rides from other drivers at least once per week; over 50% reported walking as a mode of transportation at least several times per week; and, approximately 9% cycled at least several times per week as a mode of transportation.

6.0 CONCLUSIONS AND CONSIDERATIONS

As is evident from the richness of the survey data examined in this study, there is still much to learn about young drivers as they experience learning how to drive and in their initial years of independent driving. Understanding the characteristics of teen drivers and their driving exposure is crucial to developing effective and improved strategies for keeping drivers safe on roadways. Little is known about the many factors that surround the complex procedure of learning to drive, but it is clear from the disproportionate amount of teen crashes that it is an issue that cannot be ignored. Several characteristics, behaviours and attributes relating to young G1 and G2 drivers, ages 16 through 19, were observed in this study, confirming the need to further explore how we think about young driver education, licensing and safety.

Learning how to drive safely and responsibly is a complex and difficult process to understand and implement. Graduated driver licensing programs across North America and elsewhere aim to reduce these uncertainties by targeting the risks associated with young drivers. One feature of GLS in Ontario that was intended as an incentive to encourage young drivers to complete driver education and to learn to drive safely is the time discount, which allows young drivers to obtain their G2 licence up to four months earlier than the mandatory 12-month G1 licence period. However, results of this study suggest that this particular measure to enhance the safety of young drivers in Ontario may actually be associated with increased risk.

Results from the Young Driver Survey repeatedly showed that young drivers who completed BDE and took a time discount were more likely than other groups of young drivers (i.e., those who completed BDE without taking a time discount and those who did not complete BDE) to report engaging in risky and potentially dangerous behaviours, such as texting while driving, speeding, and driving in high-risk traffic situations. These young drivers, as well as other drivers who completed BDE but did not take a time discount, were also found to have a heightened sense of confidence in their driving abilities compared to drivers who did not complete BDE.

Collectively, this evidence suggests that taking a time discount is significantly associated with having unrestricted use of a vehicle, an increase in risk-taking behaviours, as well as greater frequency of driving for certain purposes, likely in more dangerous circumstances. Combined with the fact that previous studies have already shown the crash risks resulting from allowing time discounts for young drivers, these results reinforce the notion that time discounts do not improve the safety of young drivers, and may actually be associated with risky behaviours among young and newly licensed drivers. Ultimately, this leads to the conclusion that young drivers who obtain their G2 licence early and experience reduced time spent under supervision have an increased risk of being involved in a crash.

Results also showed that a large percentage of young drivers do not adhere to the restrictions of the GLS program, and choose to engage in unsupervised driving and driving on 400-series highways while on a G1 licence. This is particularly concerning as it means that many young drivers are not receiving the safety benefits of always having a supervising driver accompany them while they are learning how to drive. As well, it indicates that young drivers are willing to take risks, such as driving on 400-series highways, before they are licensed to do so. The conclusion here is that increased awareness and attention needs to be given to this issue, both at a public and policy level. Both parents and young drivers need to be made aware of the risks and penalties associated with disregarding the restrictions of GLS and the enforcement community needs to emphasize the importance of ensuring these restrictions are adhered to for the safety of teen drivers and other road users on the roads with them.

On a more positive note, results of this study showed that the vast majority of young drivers do not engage in certain risky driving behaviours in the average month. When asked about the frequency of engaging in certain driving behaviours while driving with a G2 licence, the majority of drivers indicated that they never took chances while driving for the fun of it; ran red lights; passed other cars because it was exciting; consumed drugs or alcohol within two hours of operating a vehicle; or, drove especially close to other vehicles to let its driver know to get out of the way. These findings suggest that most young drivers understand the risks and consequences of engaging in risky driving behaviours and do not, for the most part, participate in these behaviours.

As indicated in the literature review, supervised driving practice is an essential component to GDL. Not surprisingly, parents were found to serve most often as the supervising driver to young drivers. The majority of young drivers indicate that they accumulated between 0 and 20 hours of supervised driving practice in the average month during their G1 licence period. Additionally, it was found that approximately 45% of G2 licensed drivers continued to engage in supervised driving practice during their G2 licence stage. This is an encouraging finding, as it means that young drivers and their supervisors understand the importance of practicing safe driving behaviours under supervision, even after they are no longer required to do so. Encouraging young drivers and their parents to engage in more frequent supervised driving practice during the G1 and G2 licensing periods would increase the safety benefits of this GDL component, and should ultimately reduce the risk to young drivers. And, as discussed later in this section, it may even be advisable to require a certain mandatory number of hours of supervised driving practice in the G1 period.

As well, findings indicate that parents and teen drivers often talk about the risks and responsibility of driving. Over 80% of the drivers surveyed reported that they had talked to their parents about drinking and driving, texting and driving, and other distracted driving behaviours. Furthermore, about 95% of young drivers said that their parents had talked to them about traffic safety and the rules of the road at least once or twice. These findings suggest that parental communication may be a good means of disseminating

information to teen drivers about the risks of driving. Increasing the awareness, information and resources available for parents of teen drivers relating to specific risks and behaviours associated with newly licensed drivers may serve as a way to increase the safety of these young drivers. One example of such a program is TIRF's educational tool for young and novice drivers, the Young and New Driver Resource Centre, which includes factsheets, videos, and other information about various issues related to young driver safety. More information about this program can be found at: <u>http://yndrc.tirf.ca/index.php</u>.

The implications of the results of this study provide the basis for several positive and effective changes to be made to the GLS and BDE programs in Ontario. On one hand, these results show that BDE gives young drivers greater confidence in their skills, as well as increases their perception of themselves as a safe and responsible driver. To the extent that these are the goals of the BDE program, it has been successful in achieving its goals. Indeed, the fact that young drivers who have taken BDE report that it had improved their driving skills and knowledge speaks to a high level of consumer satisfaction with BDE. However, it is also important that BDE completion does not result in unrealistic assessments of their driving skills and abilities given that the research has shown that overconfidence contributes to crash risk.

Young drivers who complete BDE and take a time discount are different from other young drivers and have been shown to be more likely to expose themselves to adverse driving conditions (i.e., driving at night and in bad weather) and engage in risky driving behaviours (e.g., speeding) during both the G1 and G2 licensing stages. This suggests that these young drivers place themselves and others at risk, and might benefit from remaining in the protective G1-stage for the full term of 12-months rather than exit four-months earlier. In light of these facts, the Ministry of Transportation should consider reviewing the issue of a time discount as part of the GLS system. Jurisdictions that have researched the merits of the time discount in the intermediate stage rather than the protective learner stage (e.g., British Columbia). Alternative incentives for completing BDE, such as insurance discounts or school credits, could also be considered.

On a similar note, the availability and convenience of public transportation options plays an important role in understanding the characteristics of the young driver population and the implications it has on public and program policy. This study revealed that young urban drivers are much more likely to indicate that the public transportation systems in their area were at least somewhat convenient to use compared to rural drivers. Similarly, a higher percentage of young urban drivers indicated that they take public transportation daily and walk as a mode of transportation at least once per week, as opposed to young rural drivers. In light of these results an increased focus should be given to rural drivers in the development and implementation of driver education tools, due to the fact that they

report less use and convenience of public transportation in the area they live, and consequently may have a greater likelihood to need to learn how to drive.

Finally, the Ministry should consider increasing the mandatory number of in-vehicle driving hours required as part of the BDE program in order to enhance the exposure that young drivers have to on-road driving with an instructor before they begin to drive independently. In support of this consideration, a recent review of the literature from Australian, European and North American evaluations suggested that requiring 80-120 hours of supervised driving practice may have optimal safety benefits to novice drivers (Senserrick and Williams 2014). The majority (90%) of young drivers said that they believed the in-vehicle portion of the BDE course was the most useful to them when learning how to drive. As well, increasing their exposure to higher-risk traffic situations as part of the BDE program (e.g., on-road lessons with a driving instructor at night) may prove beneficial to young drivers, many of whom are only exposed to these risks once they begin to drive in the G2 licence period. Increasing the cumulative practice hours among young drivers could also be achieved by requiring mandatory minimum supervised practice hours, which is a common policy in the United States. The use of driving logs that structure the types of practice (e.g., from easy to more difficult driving conditions/situations) could be promoted as a useful tool for parents and teens to incorporate into their driving practice.

Furthermore, it is important to acknowledge some of the strengths and limitations of the research conducted. For example, it should be noted that this research and the outcomes discussed in this report relied on self-report data, which is known to be associated with a range of potential biases. For example, although anonymity of responses was strongly emphasized throughout the survey process, it is possible that some of the items could have been influenced by a desire to induce socially desirable responses. Conducting research where individual participants cannot be linked to their unique responses also creates difficulty in being able to verify the accuracy of the data collected. As well, due to time and budgetary restraints, a response rate of only 12% was achieved. Additional mail-outs or reminders may have served to increase overall response rates. However, the sound sampling design, overall sample size, as well as numerous quality control procedures used throughout this research study, helped to minimize these biases. As well, the results of this study largely confirm the general findings from crash studies evaluating the impact of time discounts for driver education, supporting the robustness of the results of this evaluation. Lastly, due to the structure of the GLS process in Ontario, it became difficult to make generalizations with respect to certain populations (i.e., licence class) based on the sampling design of this study. For example, due to the nature of GLS, it was impossible to obtain a perfectly balanced sample of G1 and G2 drivers across the three targeted subgroups of drivers in this study. In other words, drivers who had completed BDE and taken a time discount could only, by virtue of the licensing system in Ontario, hold a G2 licence. Thus, decisions regarding the populations to be sampled from had to be made in order to obtain the most representative population for each of the three subgroups of interest.

Overall, the outcomes of this survey show the need for further examination and consideration of the effectiveness of Ontario's Beginner Driver Education (BDE) program. While the survey does demonstrate the positive impact that driver education had on young drivers, there were also areas identified within the program that require additional attention. Notably, several risk factors were observed among G1 and G2 drivers independently, as well as drivers who completed BDE and took a time discount. The implications of these characteristics and risk factors warrant further attention and scrutiny in order to continue to improve driver education and training, as well as to decrease the still elevated crash risk among young and novice drivers.

REFERENCES

AAA. (2006). Teen Crashes: Everyone is at Risk. Washington, DC: American Automobile Association.

Auditor General of Ontario. (2007). Driver Licensing and Driver Education Examination. Toronto, Ontario: Office of the Auditor General of Ontario.

Auditor General of Ontario. (2009). Driver Licensing and Driver Education Examination: Follow-up report. Toronto, Ontario: Office of the Auditor General of Ontario.

Boase, P., and Tasca, L. (1998). Graduated Licensing System Evaluation: Interim Report. Toronto, Ontario: Safety Policy Branch, Ontario Ministry of Transportation.

Bureau of Transportation Statistics. (2006). National Household Travel Survey. Washington, D.C.

Christie, R. (2011). The Effectiveness of Driver Training as a Road Safety Measure: A Review of the Literature (2011 Edition/Update). Report prepared for the Royal Automobile Club of Victoria (RACV) Ltd., Noble Park, Victoria.

Engstrom, I., Gregersen, N. P., Hernetkoski, K., Keskinen, E., and Nyberg, A. (2003). Young novice drivers, driver education and training. (Literature review, VTI-rapport 491A). Linköping, Sweden: Swedish National Road and Transport Research Institute.

Ehsani, J. P., Bingham, C. R., Shope, J. T., Sunbury, T. M., and Kweon, B. (2010). Teen driving exposure in Michigan: Demographic and behavioural characteristics. *Accident Analysis and Prevention*, 42: 1386-1391.

Farmer, C. M., Kirley, B. B., and McCartt, A. T. (2009). In-vehicle monitoring and the driving behaviour of teenagers. Arlington, D.C.: Insurance Institute for Highway Safety.

Foss, R. (2009). Future Directions for Research Motor Vehicle Crashes and Injuries Involving Teenage Drivers. Washington D.C.: Transportation Research Board, TRB Circular.

Governors Highways Safety Assocation (GHSA). (2012). Survey of the States: Speeding and Aggressive Driving.

Hirsch, P., Maag, U., Laberge-Nadeau, C. (2006). The role of driver education in the licensing process in Quebec. *Traffic Injury Prevention*,7:130–42.

Klauer, S. G., Simons-Morton, B., Lee, S. E., Ouimet, M. C., Howard, E. H., and Dingus, T. A. (2011). Traffic Injury Prevention Apr;12(2):159-68.

Leaf, W., Simons-Morton, B., Hartos, J., and Northrup, V. (2008). Driving miles estimates by teen drivers: How accurate are they? *Injury Prevention*, 14-59-61.

Lee, S. E., Simons-Morton, B. G., Klauer, S. E., Ouimet, M. C., and Dingus, T.A. (2011). Naturalistic assessment of novice crash experience. *Accident Analysis and Prevention*, 43: 1472-1479.

Lewis-Evans, B. (2010). Crash involvement during the different phases of the New Zealand Graduated Driver Licensing System (GLDS). *Journal of Safety Research*, 41: 359-365.

Lonero, L. and Mayhew, D. (2010). Large-Scale Evaluation of Driver Education Review of the Literature on Driver Education Evaluation: 2010 Update. Washington, D.C.: AAA Foundation for Traffic Safety.

Mayhew, D. R., and Simpson, H. M. (1990). New to the Road. Young drivers and novice drivers: similar problems and solutions? Ottawa. Ontario: Traffic Injury Research Foundation.

Mayhew, D. R., and Simpson, H. M. (1995). The Role of Driving Experience: Implications for the Training and Licensing of New Drivers. Toronto, Ontario: Insurance Bureau of Canada.

Mayhew, D. R., and Simpson, H. M. (1996) Effectiveness and Role of Driver Education in a Graduated Licensing System. Ottawa, Ontario: Traffic Injury Research Foundation.

Mayhew, D. R., and Simpson, H. M. (1999). Youth and Road Crashes: Reducing the Risks from Inexperience, Immaturity and Alcohol. Ottawa, Ontario: Traffic Injury Research Foundation.

Mayhew D. R., Simpson, H. M, and Pak A. (2002, unpublished). Ontario Graduated Licensing System Evaluation. Toronto Ontario: Ontario Ministry of Transportation.

Mayhew, D. R., and Simpson, H. M. (2002). The safety value of driver education and training. *Injury Prevention*, 8(Suppl. II): ii3-ii8.

Mayhew, D.R., Simpson, H.M., & Pak, A. (2003). Changes in collision rates among novice drivers during the first months of driving. Accident Analysis and Prevention, 35(5): 683-691.

Mayhew, D. R., and Simpson, H. M. (2003, unpublished). Formal Novice Driver Education and Exposure to the Risk of Collision in Ontario. Downsview, Ontario: Ontario Ministry of Transportation

Mayhew, D. R., Simpson, H. M., Desmond, K., and Williams, A. F. (2003). Specific and long-term effects of Nova Scotia's graduated licensing program. *Traffic Injury Prevention*, 4:91–7.

Mayhew, D. R., Singhal, D., Simpson, H. M., and Beirness, D. J. (2004). Deaths and Injuries to Young Canadians from Road Crashes. Ottawa, Ontario: Traffic Injury Research Foundation.

Mayhew, D. R., Simpson, H. M, and Singhal D. (2005). Best Practices for Graduated Driver Licensing in Canada: Ottawa, Ontario: Traffic Injury Research Foundation.

Mayhew, D. R., Simpson, H. M., Singhal, D., and Desmond, K. (2006). Reducing the crash risk for young drivers. Washington, DC: American Automobile Association.

Mayhew, D. R. (2007). Driver education and graduated licensing in North America: Past, present, and future. *Journal of Safety Research*, 38(2): 229-235.

Mayhew, D. R., and Vanlaar, W. (2008, unpublished). The Safety Impact of Graduated Driver Licensing. Internal report prepared for the Manitoba Public Insurance Corporation, Winnipeg, Manitoba.

Mayhew, D. R., et al. (2013, under review). Evaluation of Driver Education in Manitoba and Oregon. Washington, D.C.: AAA Foundation for Traffic Safety.

Mayhew, D. R., et al. (2010, unpublished). Evaluation of Manitoba's Graduated Driver Licensing Program. Ottawa, Ontario: Traffic Injury Research Foundation.

McCartt, A. T., Shabanova, V. I., and Leaf, W. A. (2003). Driving experience, crashes and traffic citations of teenage beginning drivers. *Accident Analysis and Prevention*, 35: 311-320.

McCartt A. T., Mayhew, D. R., and Simpson, H. M. (2009). The effects of age and experience on young driver crashes: Review of recent literature. *Traffic Injury Prevention*, 10: 209-219.

McGehee, D. V., Raby, M., Carney, C., Lee, J. D., and Reyes, M. L. (2007). Extending parental mentoring using an event-triggered video intervention in rural teen drivers. *Journal of Safety Research*, 38: 215-217.

MTO. (2014). "Get a G driver's licence: new drivers". Retrieved from: http://www.ontario.ca/driving-and-roads/get-g-drivers-licence-new-drivers.

MTO. (2013). An evaluation of the Beginner Driver Education (BDE) Program in Ontario. Presentation at the annual conference of the Canadian Council for Motor Transport Administrators (CCMTA).

MTO. (unknown publication date). Ontario Road Safety Annual Report (ORSAR): 2010. Retrieved from: http://www.mto.gov.on.ca/english/safety/orsar/.

Nichols, J. L. (2003). A review of the history and effectiveness of driver education and training as a traffic safety program. Washington, DC: National Transportation Safety Board.

Parker, B., Watson, B., King, M. and Hyde, M. (2011). Mileage, car ownership, experience of punishment avoidance and the risky driving of young drivers. *Traffic Injury Prevention*, 12(6): 559-567.

Prato, C., Toledo, T., Lotan, T., Taubman, O., and Ari, B. (2010). Modeling the behaviour of novice young drivers during the first year after licensure. *Accident Analysis and Prevention*, 42: 480-486.

TIRE

Roberts, I., Kwan, I., and Reviewers, C. I. G. D. E. (2002). School-based driver education for the prevention of traffic crashes. The Cochrane Library, Issue 1, Oxford, England.

Sagberg, F. (1998). Month-by-month changes in accident risk among novice drivers. Presented at the 24th International Congress of Applied Psychology, San Francisco, August, 9-14.

Senserrick, T. M., and Williams, A. F. (2014). Summary of literature on the effective components of graduated licensing schemes for car drivers. Austroads Project SS1707. Draft final report to Austroads, under review, Sydney, NSW. The University of New South Wales.

Tefft, B. (2012). Motor Vehicle Crashes, Injuries, and Deaths in Relation to Driver Age: United States, 1995–2010. Washington, D.C.: AAA Foundation for Traffic Safety.

Tefft, B. C., Williams, A. F., and Grabowski J. G. (2012). Teen Driver Risk in Relation to Age and Number of Passengers. Washington, D.C.: AAA Foundation for Traffic Safety.

Tefft, B. C., Williams, A. F., Grabowski, J. (2013). Timing of Driver's License Acquisition and Reasons for Delay among Young People in the United States. Washington, D.C.: AAA Foundation for Traffic Safety.

Toledo, T., Musicant, O., and Lotan, T. (2008). In-vehicle data recorders for monitoring and feedback on driver's behaviour. *Transportation Research Part C*, 16: 320-331.

Thomas, F. D., III, Blomberg, R. D., Donald L., and Fisher, D. L. (2012, April). A Fresh Look at Driver Education in America. (Report No. DOT HS 811 543). Washington, DC: National Highway Traffic Safety Administration.

Vanlaar, W., Mayhew, D., Marcoux, K., Wets, G., Brijs, T., and Shope, J. (2009). An evaluation of graduated driver licensing programs in North America using a metaanalytical approach. *Accident Analysis and Prevention*, 41, pp. 1104-1111.

Vanlaar, W., Robertson, R., Marcoux, K. (2008). The Road Safety Monitor 2007: Excessive Speeding. Ottawa: Traffic Injury Research Foundation.

Vernick, J. D., Li, G., Ogaitis, S., MacKenzie, E. J., Baker, S. P., and Gielen, A. C. (1999). Effects of high school driver education on motor vehicle crashes, violations, and licensure. *American Journal of Preventive Medicine*, 1S, 16.

Wiggins S. (2004). Graduated licensing program: interim evaluation report-year 3. Victoria, Canada: Insurance Corporation of British Columbia.

Williams, A. F., and Wells, J. K. (1995). Deaths of teenagers as motor vehicle passengers. *Journal of Safety Research*, 26(3): 161-167.

Williams, A. F. (2003). Teenage drivers: Patterns of risk. *Journal of Safety Research*, 34(1): 5-15.
TIRF Traffic Injury Research Foundation

Williams, A. F., Ferguson, S. A., and Wells, J. K. (2005). Sixteen-year-old drivers in fatal crashes, United States, 2003. *Traffic Injury Prevention*, 6: 202-206.

Williams, A. F., Preusser, D. F., and Ledingham, K. A. (2009). Feasibility Study on Evaluating Driver Education Curriculum. Washington, D.C. National Highway Traffic Safety Administration.

Williams, A. F., McCartt, A. T., Mayhew, D. R., and Watson, B. (2013). Licensing Age Issues: Deliberations from a Workshop. *Traffic Injury Prevention*, 14, 237–243.

Woolley, J. (2000). In car driver training at high schools: a literature review. Walkerville, South Australia: Safety Strategy, Transportation.

APPENDIX A

Figure 5-1: Distribution of responses by sampling design

	BDE_TD	BDE_noTD	non_BDE	Totals
16-Urban	92	28	40	160
16-Rural	38	33	17	88
17-Urban	100	45	48	193
17-Rural	70	28	21	119
18-Urban	70	34	43	147
18-Rural	34	19	20	73
19-Urban	70	45	39	154
19-Rural	28	14	19	61
Totals	502	246	247	995

Figure 5-2: Distribution of responses by age

Number o	of strata	=	6	;		Numk	per of ob	s :	=	995	_
Number o	of PSUs	=	995			Ρορι	lation s	ize :	= :	228037	
						Desi	.gn df	:	=	989	
age	- years	perce	ntages		lb		ub				
	16		12.76		10.78	15	5.03				
	17		25.13		22.38	2	28.1				
	18		32.28		28.61	36	5.19				
	19		29.83		26.39	33	8.51				
	Total		100								
Key:	percentag	jes =	cell p	erce	entages						
	lb	=	lower	95%	confidence	bounds	for cell	percent	tages		
	ub	=	upper	95%	confidence	bounds	for cell	percent	tages		

Figure 5-3: Distribution of responses by gender

Number	of strata	= 24		Number o	ot obs	=	995
Number	of PSUs	= 995		Populat	ion siz	e = 2	28037
				Design o	lf	=	971
	are you:	percentages	lb	ub			
	male	46.24	42.43	50.08			
	female	53.76	49.92	57.57			
	Total	100					
Key:	percentag	ges = cell pe	rcentages				
	1b ub	= lower 9 = upper 9	5% confidence 5% confidence	bounds for bounds for	cell p	ercentages ercentages	

Number of strata	= 2	4	Number o	of obs	=	995
Number of PSUs	= 99	5	Populati	on size	=	228037
			Design d	łf	=	971
			Depignie	~_		272
		classifi	cation			
postalcode	BDE w/ TD	BDE w/o TD	non-BDE	Total		
rural	51.92	26.17	21.92	100		
urban	45.25	33.81	20.94	100		
Total	46.47	32.41	21.11	100		
Key: row perce	entages					
Pearson:						
Uncorrected	chi2(2)	= 4.1	570			
Design-based	F(1.59, 154	8.04)= 1.04e	+31 P = 0.	0000		

Figure 5-4: Distribution of responses by demographics

Figure 5-5: Distribution of responses by school year

Number o	f strata	=	24	ł		Numb	ber o	f obs	5 =		995	
Number o	f PSUs	=	995	5		Ρορι	ulati	on si	ze =	2	28037	
						Des	ign d	£	=		971	
Gurront												
Educatio	n Level	perce	ntages		lb		ub					
High	School		44.61		42.47	46	6.78					
Uni	versity		49.84		47.22	52	2.46					
Not In	School		5.544		4.071	7	.509					
	Total		100									
Key:	percentag	jes =	cell p	erce	entages							
	lb	=	lower	95%	confidence	bounds	for (cell	percent	ages		
	ub	=	upper	95%	confidence	bounds	for (cell	percent	ages		

Figure 5-6: Distribution of responses by targeted subgroups

Number of strata	= 8		Number of c	obs =	995
Number of PSUs	= 995		Population	size =	228037
			Design df	=	987
classification	percentages	lb	ub		
BDE w/ TD	46.47	42.81	50.17		
BDE w/o TD	32.41	28.66	36.41		
non-BDE	21.11	18.56	23.92		
Total	100				
Key: percentag	ges = cell pe	rcentages			
lb	= lower 9	5% confidence	bounds for cel	ll percentage	S
ub	= upper 9	5% confidence	bounds for cel	ll percentage	S

Number of strata	= 4		Number of obs	=	995
Number of PSUs	= 995		Population size	=	228037
			Design df	=	991
		classif	ication		
postalcode	BDE w/ T	BDE w/o	non-BDE		Total
rural	51.92	26.17	21.92		100
	[45.88,57.89]	[20.85,32.29]	[17.63,26.91]		
urban	45.25	33.81	20.94		100
	[40.97,49.61]	[29.4,38.52]	[17.93,24.3]		
Total	46.47	32.41	21.11		100
	[42.8,50.17]	[28.65,36.42]	[18.53,23.95]		
Kev: row perce	entages				
[95% conf	idence interval	s for row perce	entages]		
Deargon:					
Uncorrected	chi2(2)	= 4.1570			
Design-based	F(1.95, 1934.6	3)= 2.3887	P = 0.0934		

Figure 5-7: Distribution of subgroups by demographic information

Figure 5-8: Distribution of subgroups by school status

Number of strata	= 24		Number of obs	=	995
Number of PSUs	= 995		Population size	=	228037
			Design df	=	971
Current		classif	ication		
Education Level	BDE w/ T	BDE w/o	non-BDE		Total
High School	49.35	24.19	26.46		100
	[46.95,51.75]	[21.33,27.31]	[24.82,28.16]		
University	44.47	39.77	15.76		100
	[41.96,47.01]	[37.03,42.58]	[14.17,17.48]		
Not In School	41.29	32.42	26.29		100
	[27.5,56.59]	[18.68,50.06]	[16.92,38.45]		
Total	46.47	32.41	21.11		100
		[32,41,32,41]			

Figure 5-9: Do drivers, who complete BDE, drive prior to enrolling in BDE?

Number	of strata	=	16			Numb	er c	of ob:	5	=	741
Number	of PSUs	=	741			Popu	lati	on s	ize	= 1790	91.67
						Desi	gn d	lf		=	725
							2				
Did you	drive										
before											
enrolli	ng in										
CHIOIII PDF2		norgor	tages		16		uh				
BDE:		percer	ILAYES		10		ub				
	27.5		22 52		1.0	200					
	NO		22.53		19	26	.51				
	Yes		77.47	73.	49		81				
	Total		100								
Key:	percentag	jes =	cell pero	centages	3						
	lb	=	lower 959	& confid	lence	bounds	for	cell	percen	tages	
	ub	=	upper 95	& confid	lence	bounds	for	cell	percen	tages	
									-	-	

Figure 5-10: How many days do G1 drivers drive in an average mo

Number of strata	=	4	Numbe	r of obs	= 114
Number of PSUs	= 11	4	Popul	ation size	= 22763.161
			Desig	n df	= 110
	On how m	any days do	you drive in	the average	month?
classification	0-7 days	8-15 days	16-23 days	24-31 days	Total
BDE w/o TD	64.29	29.96	2.58	3.174	100
	[47.91,77.	[17.41,46.	[.9972,6.5	[.4217,20.	
non-BDE	76.47	9.009	6.385	8.134	100
	[62.82,86.	[3.748,20.	[2.032,18.	[3.143,19.	
Total	74.59	12.25	5.797	7.367	100
	[63.11,83.	[6.865,20.	[2,15.65]	[3.013,16.	
Key: row perce	entages				
[95% conf	idence inter	vals for row	/ percentages]	
Pearson:					
Uncorrected	chi2(3)	= 6.	5067		
Design-based	F(2.51, 276	.23) = 3.	6211 P =	0.0193	

Number of strata	= 20		Number of obs	= 853	
Number of PSUs	= 853		Population siz	e = 199090.43	
			Design df	= 833	
······					
	On	how many days d	o you drive in	the average month?	
classification	0-7 days	8-15 days	16-23 days	24-31 days	Total
BDE w/ TD	27.95	21.84	21.16	29.04	100
	[23.52,32.87]	[17.88,26.4]	[17.27,25.67]	[24.59,33.93]	
BDE w/o TD	39.88	21.24	18.58	20.3	100
	[31.93,48.39]	[15.14,28.98]	[12.8,26.17]	[14.46,27.75]	
non-BDE	37.79	16.43	21.53	24.25	100
	[30.26,45.97]	[11.26,23.35]	[15.99,28.35]	[17.97,31.86]	
Total	33.42	20.88	20.33	25.38	100
	[29.64,37.42]	[17.73,24.42]	[17.25,23.79]	[22.07,28.99]	
Kev: row perce	entages				
[95% conf	idence interval	s for row perce	ntages]		
-					
Pearson:	abi2(6)	- 15 6571			
Dogion based		= 10.05/1	D = 0 0006		
Design-based	r(3.32, 4431.0	2)- 1.9349	P = 0.0806		

Figure 5-11: How many days do G2 drivers drive in an average month?

Figure 5-12: Logistic regression

Number of str	ata =	20		Number of	obs =	853
Number of PSU	s =	853		Populatio	on size =	199090.43
				Design df	-	833
				F(6,	828) =	5.04
				Prob > F	=	0.0000
		Linearized				
days_drive	Odds Ratio	Std. Err.	t	P> t	[95% Conf.	[Interval]
classifica~n						
BDE w/ TD	1.000	(base)				
BDE w/o TD	0.696	0.153	-1.649	0.100	0.452	1.072
non-BDE	0.768	0.168	-1.205	0.228	0.500	1.180
gender						
male	1.000	(base)				
female	1.043	0.194	0.226	0.821	0.724	1.502
ageyears						
16	1.000	(base)				
17	1.047	0.300	0.161	0.872	0.597	1.837
18	0.477	0.138	-2.552	0.011	0.270	0.843
19	0.453	0.132	-2.713	0.007	0.256	0.803
_cons	3.959	0.993	5.484	0.000	2.419	6.478

Number of st	:rata =	4	Number	of obs =	114
Number of PS	SUs =	114	Populat	ion size =	22763.161
			Design	df =	110
classifica		How many km	do you drive e	each month?	
tion	<100	101-500	501-1000	>1000	Total
	-100	101 000	501 1000	- 1000	10041
BDE w/o TD	48.36	49.7	1.29	.645	100
, -	[32 68 64 38]	[33 85 65 61]	[3223 5 016]	[0882 4 554]	
	[52.00,01.50]	[55.65,65.61]	[.5225,5.010]	[.0002,1.551]	
non-BDE	80.23	17 64	2 128	0	100
HOH DDE		17.01		0	100
	[07.92,88.01]	[9.92,29.4]	[.2003,14.14]		
Tetel	75 21	22.6	1 000	0007	100
IOLAI	/5.31	22.0	1.999	.0997	100
	[65.16,83.25]	[15.18,32.25]	[.3275,11.24]	[.0137,.7204]	
Key: row	percentages				
[95%	confidence in	tervals for row	w percentages]		
Pearson:					
Uncorrec	cted chi2(3)	= 9	.4636		
Design-b	pased F(2.06, 2	226.10) = 8	.0487 P = 0	0.0004	

Figure 5-13: How many kilometers do G1 drivers drive each month?

Figure 5-14: Logistic regression

Number of stra	ata =	4		Number of	obs =	: 114
Number of PSUs	3 =	114		Population	n size =	22763.161
				Design df	=	- 110
				F(2,	109) =	6.58
				Prob > F	=	0.0020
		Linearized				
km_drive	Odds Ratio	Std. Err.	t	P> t	[95% Conf.	[Interval]
classifica~n						
BDE w/o TD	1.000	(base)				
non-BDE	0.205	0.099	-3.263	0.001	0.078	0.536
gender						
male	1.000	(base)				
female	0.353	0.190	-1.934	0.056	0.121	1.026
cons	1.929	0.935	1.355	0.178	0.738	5.042
	1.727	0.935	1.555	0.1,0	0.750	5.042
	1.929	0.935	1.355	0.1/8	0.738	5.042

Number of st	trata =	20	Number	of obs =	852
Number of PS	SUs =	852	Popula	tion size =	198966.6
			Design	df =	832
classifica		How many km	do you drive o	each month?	
tion	<100	101-500	501-1000	>1000	Total
BDE w/ TD	39.43	37.98	17.56	5.032	100
	[34.47,44.62]	[33.09,43.12]	[13.99,21.81]	[3.307,7.586]	
BDE w/o TD	46.02	37.18	12.25	4.553	100
	[37.74,54.52]	[29.39,45.7]	[7.873,18.56]	[2.286,8.863]	
non-BDE	38.82	39.32	14.37	7.483	100
	[31.48,46.71]	[31.79,47.4]	[9.647,20.88]	[4.198,12.99]	
Total	41.6	37.89	15.29	5.211	100
	[37.61,45.71]	[33.99,41.96]	[12.68,18.33]	[3.804,7.101]	
Key: row	percentages				
[95	% confidence int	cervals for row	w percentages]		
Pearson:					
Uncorrec	cted chi2(6)	= б	.9665		
Design-1	based F(5.39, 4	4484.77) = 0	.9097 P =	0.4789	

Figure 5-15: How many kilometers do G2 drivers drive each month?

Figure 5-16: Logistic regression

Number of stra	ata =	24		Number of	obs =	= 966
Number of PSUs	3 =	966		Population	n size =	= 221729.76
				Design df	=	= 942
				F(2,	941) =	= 15.99
				Prob > F	- ,	= 0.0000
				1100 1		0.0000
		Linearized				
In and and		Diffeatized		D .	LOE Court	T., t
km_drive	Udds Ratio	Std. Err.	t	P> t	[95% Conr	. intervalj
liconcotumo						
licencetype						
gl licence	1.000	(base)				
g2 licence	4.282	1.113	5.596	0.000	2.571	7.132
gender						
male	1.000	(base)				
female	0.942	0.155	-0.365	0.715	0.682	1.301
cong	0 339	0 091	-4 031	0 000	0 200	0 574
_00115	0.339	0.091	4.031	0.000	0.200	0.574

Figure 5-17: How often do young drivers drive to/from school, monthly?

Number of st	rata = 24	L	Number of obs	= 861
Number of PS	SUs = 861		Population size	= 189318.92
			Design df	= 837
How often				
nave you driver to				
ariven co				
gel to/from				
co/irom		alocatif	ightion	
monthly?	BDF w/ TD	BDF W/O TD	non-BDF	Total
	BDE W/ ID	BDE W/O ID		
Never	33.08	45.71	53.38	41.05
	[28.21,38.34]	[37.17,54.51]	[45.58,61.02]	[37.1,45.11]
Once	8.602	6.921	6.704	7.7
	[6.05,12.09]	[3.76,12.4]	[3.621,12.08]	[5.836,10.1]
Sometimes	13.67	9.179	10.04	11.54
	[10.34,17.86]	[5.386,15.22]	[6.149,15.97]	[9.227,14.35]
Often	12.57	13.5	8.786	12.11
	[9.374,16.65]	[8.537,20.69]	[5.334,14.14]	[9.647,15.11]
Very Often	32.08	24.69	21.09	27.6
	[27.27,37.31]	[18.04,32.82]	[15.81,27.57]	[24.16,31.32]
Total	100	100	100	100
Key: colu	umn percentages			
[958	confidence interv	als for column pe	ercentages]	
Pearson:				
Uncorrec	cted chi2(8)	= 26.9502		
Design-b	pased F(7.56, 6330	.51)= 2.3291	P = 0.0193	

Figure 5-18: Logistic regression

Number of stra	ata =	24		Number of	obs =	861
Number of PSUs	5 =	861		Populatio	n size =	189318.92
				Design df	=	837
				F(6,	832) =	8.11
				Prob > F	=	0.0000
		Linearized				
never_to_~ol	Odds Ratio	Std. Err.	t	P> t	[95% Conf.	Interval]
classifica~n						
BDE w/ TD	1.000	(base)				
BDE w/o TD	0.704	0.157	-1.571	0.117	0.454	1.091
non-BDE	0.599	0.119	-2.588	0.010	0.407	0.884
gender						
male	1.000	(base)				
female	1.002	0.183	0.013	0.990	0.700	1.435
ageyears						
16	1.000	(base)				
17	3.855	0.953	5.459	0.000	2.373	6.263
18	1.374	0.346	1.262	0.207	0.838	2.254
19	1.185	0.299	0.671	0.502	0.722	1.945
_cons	1.083	0.256	0.337	0.736	0.681	1.723

Number of st	trata =	24	Number of	obs =
Number of P	SUs =	861	Populatic Design df	n size = 18931 =
How often				
have you driven to				
get				
to/from				
work,	DDE M/ T	classif	ication	Total
	DE W/ I	BDE W/O	IIOII-BDE	10td1
Never	40.22	42.03	56.36	43.97
	[34.99,45.68]	[33.73,50.81]	[48.9,63.55]	[39.98,48.04]
Once	3.25	5.827	4.198	4.246
	[1.778,5.869]	[2.854,11.53]	[2.042,8.436]	[2.835,6.315]
Sometimes	11.56	10.32	11.43	11.14
	[8.471,15.57]	[6.185,16.74]	[7.137,17.8]	[8.812,14]
Often	16.28	19.12	9.672	15.87
	[12.55,20.86]	[12.93,27.34]	[6.103,15]	[12.97,19.28]
Very Often	28.69	22.7	18.34	24.77
	[24.14,33.72]	[16.28,30.71]	[13.65,24.2]	[21.5,28.35]
Total	100	100	100	100
Key: colu [95	umn percentages % confidence int	ervals for colu	mn percentages]	
Pearson:				
Uncorrec	cted chi2(8)	= 22.1	889	
Design-1	based F(7.43, 6	216.52)= 1.9	132 P = 0.0	590

Figure 5-19: How often do young drivers drive to/from work, monthly?

Figure 5-20: Logistic regression

Number of PSUs		24		Number of	obs =	861
		861		Population	n size =	189318.92
				Design df	=	837
				F(6,	832) =	5.16
				Prob > F	=	0.0000
		Linearized				
never_to_w~k	Odds Ratio	Std. Err.	t	₽> t	[95% Conf.	Interval]
classifica~n						
BDE w/ TD	1.000	(base)				
BDE w/o TD	0.865	0.186	-0.674	0.500	0.566	1.320
non-BDE	0.662	0.130	-2.096	0.036	0.450	0.974
gender						
male	1.000	(base)				
female	1.623	0.284	2.766	0.006	1.151	2.287
agevears						
16	1 000	(base)				
17	2 324	0 557	3 518	0 000	1 452	3 7 2 1
10	2.324	0.557	2 241	0.000	1 204	2 964
10	2.321	0.003	3.241	0.001	1.394	5.004
19	3.157	0.832	4.364	0.000	1.882	5.294
_cons	0.491	0.119	-2.937	0.003	0.305	0.790
Survey: Logist	ic regressio	n				
Number of stra	ita =	24		Number of	obs =	861
Number of stra Number of PSUs	uta =	24 861		Number of Population	obs = n size =	861 189318.92
Number of stra Number of PSUs	s =	24 861		Number of Population Design df	obs = n size = =	861 189318.92 837
- Number of stra Number of PSUs	uta = 5 =	24 861		Number of Population Design df F(6, Prob > F	obs = n size = 832) =	861 189318.92 837 5.16 0.0000
- Number of stra Number of PSUs	ata = 3 =	24 861		Number of Population Design df F(6, Prob > F	obs = n size = 832) = =	861 189318.92 837 5.16 0.0000
Number of stra Number of PSUs	ata = 5 =	24 861 Linearized		Number of Population Design df F(6, Prob > F	obs = n size = 832) = =	861 189318.92 837 5.16 0.0000
Number of stra Number of PSUs never_to_w~k	odds Ratio	24 861 Linearized Std. Err.	t	Number of Population Design df F(6, Prob > F P> t	obs = n size = 832) = = [95% Conf.	861 189318.92 837 5.16 0.0000 Interval]
Number of stra Number of PSUs never_to_w~k classifica~n	odds Ratio	24 861 Linearized Std. Err.	t	Number of Population Design df F(6, Prob > F P> t	obs = n size = 832) = [95% Conf.	861 189318.92 837 5.16 0.0000 Interval]
Number of stra Number of PSUs never_to_w~k classifica~n BDE w/ TD	Ata = 5 = Odds Ratio 1.157	24 861 Linearized Std. Err. 0.249	t 0.674	Number of Population Design df F(6, Prob > F P> t 0.500	obs = n size = 832) = [95% Conf. 0.757	861 189318.92 837 5.16 0.0000 Interval]
Number of stra Number of PSUs never_to_w~k classifica~n BDE w/ TD BDE w/o TD	0dds Ratio 1.157 1.000	24 861 Linearized Std. Err. 0.249 (base)	t 0.674	Number of Population Design df F(6, Prob > F P> t 0.500	obs = n size = 832) = [95% Conf. 0.757	861 189318.92 837 5.16 0.0000 Interval]
Number of stra Number of PSUs never_to_w~k classifica~n BDE w/ TD BDE w/o TD non-BDE	Odds Ratio 1.157 1.000 0.766	24 861 Linearized Std. Err. 0.249 (base) 0.183	t 0.674 -1.115	Number of Population Design df F(6, Prob > F P> t 0.500 0.265	obs = n size = 832) = [95% Conf. 0.757 0.479	861 189318.92 837 5.16 0.0000 Interval] 1.766 1.225
Number of stra Number of PSUs never_to_w~k classifica~n BDE w/ TD BDE w/o TD non-BDE gender	Odds Ratio 1.157 1.000 0.766	24 861 Linearized Std. Err. 0.249 (base) 0.183	t 0.674 -1.115	Number of Population Design df F(6, Prob > F P> t 0.500 0.265	obs = n size = 832) = [95% Conf. 0.757 0.479	861 189318.92 837 5.16 0.0000 Interval] 1.766 1.225
Number of stra Number of PSUs never_to_w~k classifica~n BDE w/ TD BDE w/ o TD non-BDE gender male	Odds Ratio 0dds Ratio 1.157 1.000 0.766	24 861 Linearized Std. Err. 0.249 (base) 0.183 (base)	t 0.674 -1.115	Number of Population Design df F(6, Prob > F P> t 0.500 0.265	obs = n size = 832) = [95% Conf. 0.757 0.479	861 189318.92 837 5.16 0.0000 Interval] 1.766 1.225
Number of stra Number of PSUs never_to_w~k classifica~n BDE w/ TD BDE w/ o TD non-BDE gender male female	Odds Ratio 0dds Ratio 1.157 1.000 0.766 1.000 1.623	24 861 Linearized Std. Err. 0.249 (base) 0.183 (base) 0.284	t 0.674 -1.115 2.766	Number of Population Design df F(6, Prob > F P> t 0.500 0.265	obs = n size = 832) = [95% Conf. 0.757 0.479	861 189318.92 837 5.16 0.0000 Interval] 1.766 1.225 2.287
Number of stra Number of PSUs never_to_w~k classifica~n BDE w/ TD BDE w/ o TD non-BDE gender male female	Odds Ratio 0dds Ratio 1.157 1.000 0.766 1.000 1.623	24 861 Linearized Std. Err. 0.249 (base) 0.183 (base) 0.284	t 0.674 -1.115 2.766	Number of Population Design df F(6, Prob > F P> t 0.500 0.265 0.006	obs = n size = 832) = [95% Conf. 0.757 0.479 1.151	861 189318.92 837 5.16 0.0000 Interval] 1.766 1.225 2.287
Number of stra Number of PSUs never_to_w~k classifica~n BDE w/ TD BDE w/ o TD non-BDE gender male female ageyears	Odds Ratio 0dds Ratio 1.157 1.000 0.766 1.000 1.623	24 861 Linearized Std. Err. 0.249 (base) 0.183 (base) 0.284	t 0.674 -1.115 2.766	Number of Population Design df F(6, Prob > F P> t 0.500 0.265 0.006	obs = n size = 832) = [95% Conf. 0.757 0.479 1.151	861 189318.92 837 5.16 0.0000 Interval] 1.766 1.225 2.287
Number of stra Number of PSUs never_to_w~k classifica~n BDE w/ TD BDE w/o TD non-BDE gender male female ageyears 16	Odds Ratio Odds Ratio 1.157 1.000 0.766 1.000 1.623 1.000	24 861 Linearized Std. Err. 0.249 (base) 0.183 (base) 0.284 (base)	t 0.674 -1.115 2.766	Number of Population Design df F(6, Prob > F P> t 0.500 0.265 0.006	obs = n size = 832) = [95% Conf. 0.757 0.479 1.151	861 189318.92 837 5.16 0.0000 Interval] 1.766 1.225 2.287
Number of stra Number of PSUs never_to_w~k classifica~n BDE w/ TD BDE w/ 0 TD non-BDE gender male female ageyears 16 17	Odds Ratio Odds Ratio 1.157 1.000 0.766 1.000 1.623 1.000 2.324	24 861 Linearized Std. Err. 0.249 (base) 0.183 (base) 0.284 (base) 0.557	t 0.674 -1.115 2.766 3.518	Number of Population Design df F(6, Prob > F P> t 0.500 0.265 0.006 0.000	obs = n size = 832) = [95% Conf. 0.757 0.479 1.151 1.452	861 189318.92 837 5.16 0.0000 Interval] 1.766 1.225 2.287 3.721
Number of stra Number of PSUs never_to_w~k classifica~n BDE w/ TD BDE w/ TD BDE w/ o TD non-BDE gender male female ageyears 16 17 18	Odds Ratio Odds Ratio 1.157 1.000 0.766 1.000 1.623 1.000 2.324 2.321	24 861 Linearized Std. Err. 0.249 (base) 0.183 (base) 0.284 (base) 0.284 (base) 0.557 0.603	t 0.674 -1.115 2.766 3.518 3.241	Number of Population Design df F(6, Prob > F P> t 0.500 0.265 0.006 0.000 0.001	obs = n size = 832) = [95% Conf. 0.757 0.479 1.151 1.452 1.394	861 189318.92 837 5.16 0.0000 Interval] 1.766 1.225 2.287 3.721 3.864
Number of stra Number of PSUs never_to_w~k classifica~n BDE w/ TD BDE w/o TD non-BDE gender male female ageyears 16 17 18 19	Odds Ratio Odds Ratio 1.157 1.000 0.766 1.000 1.623 1.000 2.324 2.321 3.157	24 861 Linearized Std. Err. (base) 0.183 (base) 0.284 (base) 0.284 (base) 0.557 0.603 0.832	t 0.674 -1.115 2.766 3.518 3.241 4.364	Number of Population Design df F(6, Prob > F P> t 0.500 0.265 0.006 0.000 0.001 0.000	obs = n size = 832) = [95% Conf. 0.757 0.479 1.151 1.452 1.394 1.882	861 189318.92 837 5.16 0.0000 Interval] 1.766 1.225 2.287 3.721 3.864 5.294

Number of st	:rata =	24	Number of	obs =	
Number of PS	SUs =	861	Populatio	n size = 1893	318
			Design di		
How often					
nave you					
part of					
your job,		classif	ication		
monthly?	BDE w/ T	BDE w/o	non-BDE	Total	
Never	79.65	87.14	84.24	82.91	
	[74.88,83.71]	[80.13,91.92]	[78.04,88.94]	[79.67,85.72]	
Once	3.845	2.598	2.467	3.182	
	[2.158,6.76]	[.9352,7.009]	[1.084,5.517]	[2.036,4.941]	
Sometimes	3.816	3.093	3.064	3.44	
	[2.224,6.472]	[1.194,7.774]	[1.218,7.497]	[2.243,5.242]	
Often	6.239	3.089	5.8	5.163	
	[3.988,9.631]	[1.184,7.818]	[3.045,10.77]	[3.643,7.269]	
Very Often	6.449	4.083	4.426	5.307	
	[4.344,9.474]	[1.635,9.83]	[2.258,8.497]	[3.78,7.404]	
Total	100	100	100	100	
Key: colı [95१	umn percentages & confidence int	ervals for colu	mn percentages]		
Pearson:					
Uncorrec	cted chi2(8)	= 8.0	136		
Design-b	pased F(7.32, 6	130.20)= 0.6	848 P = 0.6	920	

Figure 5-21: How often do young drivers drive as part of a job, monthly?

Figure 5-22: Logistic regression

Number of Stra	ata =	24		Number of	obs =	861
Number of PSU:	5 =	801		Population	n size =	189318.92
				Design di	921) -	837 2 6 F
				Prob > F		0 0102
				F100 / F	-	0.0102
		Linearized				
never_to_job	Odds Ratio	Std. Err.	t	P> t	[95% Conf.	Interval]
classifica~n						
BDE w/ TD	1.000	(base)				
BDE w/o TD	0.555	0.167	-1.959	0.050	0.307	1.001
non-BDE	0.877	0.220	-0.521	0.603	0.536	1.437
gender						
male	1.000	(base)				
female	0.682	0.155	-1.683	0.093	0.437	1.065
ageyears						
16	1.000	(base)			_	
17	3.079	1.400	2.473	0.014	1.261	7.517
18	2.750	1.299	2.142	0.033	1.088	6.951
19	4.748	2.217	3.336	0.001	1.899	11.872
num_postal~e						
Rural	1.000	(base)				
Urban	0.719	0.155	-1.528	0.127	0.471	1.098
_cons	0.127	0.058	-4.526	0.000	0.052	0.310
	CIC IEGIESSIO	11				
Number of stra Number of PSU	ata = 5 =	24 861		Number of Population	obs = n size =	861 189318.92
Number of stra Number of PSU	ata = s =	24 861		Number of Population Design df	obs = n size = =	861 189318.92 837
Number of stra Number of PSUa	ata = s =	24 861		Number of Population Design df F(7,	obs = n size = = 831) =	861 189318.92 837 2.65
Number of stra Number of PSU	ata = s =	24 861		Number of Population Design df F(7, Prob > F	obs = n size = 831) = =	861 189318.92 837 2.65 0.0102
Number of stra Number of PSU	ata = s =	24 861 Linearized		Number of Population Design df F(7, Prob > F	obs = n size = 831) = =	861 189318.92 837 2.65 0.0102
Number of stra Number of PSUs never_to_job	ata = s = Odds Ratio	24 861 Linearized Std. Err.	t	Number of Population Design df F(7, Prob > F P> t	obs = n size = 831) = [95% Conf.	861 189318.92 837 2.65 0.0102 Interval]
Number of stra Number of PSU: 	ata = s = Odds Ratio	24 861 Linearized Std. Err.	t	Number of Population Design df F(7, Prob > F P> t	obs = n size = 831) = [95% Conf.	861 189318.92 837 2.65 0.0102 Interval]
Number of stra Number of PSU: never_to_job classifica~n BDE w/ TD	odds Ratio	Linearized Std. Err.	t 1.959	Number of Population Design df F(7, Prob > F P> t 0.050	obs = n size = 831) = [95% Conf. 0.999	861 189318.92 837 2.65 0.0102 Interval] 3.255
Number of stra Number of PSU: never_to_job classifica~n BDE w/ TD BDE w/ TD	ata = s = Odds Ratio 1.803 1.000	Linearized Std. Err. 0.543 (base)	t 1.959	Number of Population Design df F(7, Prob > F P> t 0.050	obs = n size = 831) = [95% Conf. 0.999	861 189318.92 837 2.65 0.0102 Interval] 3.255
Number of stra Number of PSU; never_to_job classifica~n BDE w/ TD BDE w/o TD non-BDE	Ata = s = Odds Ratio 1.803 1.000 1.582	Linearized Std. Err. 0.543 (base) 0.533	t 1.959 1.361	Number of Population Design df F(7, Prob > F P> t 0.050 0.174	obs = n size = 831) = [95% Conf. 0.999 0.817	861 189318.92 837 2.65 0.0102 Interval] 3.255 3.064
Number of stra Number of PSUs never_to_job classifica~n BDE w/ TD BDE w/ TD BDE w/ TD non-BDE gender	ata = s = Odds Ratio 1.803 1.000 1.582	24 861 Linearized Std. Err. 0.543 (base) 0.533	t 1.959 1.361	Number of Population Design df F(7, Prob > F P> t 0.050 0.174	obs = n size = 831) = [95% Conf. 0.999 0.817	861 189318.92 837 2.65 0.0102 Interval] 3.255 3.064
Number of stra Number of PSU; never_to_job classifica~n BDE w/o TD BDE w/o TD non-BDE gender male	ata = s = Odds Ratio 1.803 1.000 1.582 1.000	24 861 Linearized Std. Err. 0.543 (base) 0.533 (base)	t 1.959 1.361	Number of Population Design df F(7, Prob > F P> t 0.050 0.174	obs = n size = 831) = [95% Conf. 0.999 0.817	861 189318.92 837 2.65 0.0102 Interval] 3.255 3.064
Number of stra Number of PSUs never_to_job classifica~n BDE w/ TD BDE w/o TD non-BDE gender male female	Ata = 0dds Ratio 1.803 1.000 1.582 1.000 0.682	24 861 Linearized Std. Err. 0.543 (base) 0.533 (base) 0.155	t 1.959 1.361 -1.683	Number of Population Design df F(7, Prob > F P> t 0.050 0.174 0.093	obs = n size = 831) = [95% Conf. 0.999 0.817 0.437	861 189318.92 837 2.65 0.0102 Interval] 3.255 3.064 1.065
Number of stra Number of PSU; never_to_job classifica~n BDE w/ TD BDE w/ o TD non-BDE gender male female ageyears	Ata = s = Odds Ratio 1.803 1.000 1.582 1.000 0.682 1.000	Linearized Std. Err. 0.543 (base) 0.533 (base) 0.155	t 1.959 1.361 -1.683	Number of Population Design df F(7, Prob > F P> t 0.050 0.174 0.093	obs = n size = 831) = [95% Conf. 0.999 0.817 0.437	861 189318.92 837 2.65 0.0102 Interval] 3.255 3.064 1.065
Number of stra Number of PSU: never_to_job classifica~n BDE w/o TD BDE w/o TD non-BDE gender male female ageyears 16 17	Ata = S = Odds Ratio 1.803 1.000 1.582 1.000 0.682 1.000 0.79	Linearized Std. Err. 0.543 (base) 0.533 (base) 0.155 (base)	t 1.959 1.361 -1.683	Number of Population Design df F(7, Prob > F P> t 0.050 0.174 0.093	obs = n size = 831) = [95% Conf. 0.999 0.817 0.437	861 189318.92 837 2.65 0.0102 Interval] 3.255 3.064 1.065
Number of stra Number of PSUs classifica~n BDE w/ TD BDE w/o TD non-BDE gender male female ageyears 16 17 18	ata = s = Odds Ratio 1.803 1.000 1.582 1.000 0.682 1.000 3.079 2.750	Linearized Std. Err. 0.543 (base) 0.155 (base) 1.400 1 299	t 1.959 1.361 -1.683 2.473 2.142	Number of Population Design df F(7, Prob > F P> t 0.050 0.174 0.093 0.014 0.033	obs = n size = 831) = [95% Conf. 0.999 0.817 0.437 1.261 1.088	861 189318.92 837 2.65 0.0102 Interval] 3.255 3.064 1.065 7.517 6.951
Number of stra Number of PSU; never_to_job classifica~n BDE w/o TD non-BDE gender male female ageyears 16 17 18 19	Ata = S = Odds Ratio 1.803 1.000 1.582 1.000 0.682 1.000 3.079 2.750 4.748	24 861 Linearized Std. Err. 0.543 (base) 0.533 (base) 0.155 (base) 1.400 1.299 2.217	t 1.959 1.361 -1.683 2.473 2.142 3.336	Number of Population Design df F(7, Prob > F P> t 0.050 0.174 0.093 0.014 0.033 0.001	obs = n size = 831) = [95% Conf. 0.999 0.817 0.437 1.261 1.088 1.899	861 189318.92 837 2.65 0.0102 Interval] 3.255 3.064 1.065 7.517 6.951 11.872
Number of stra Number of PSU: never_to_job classifica~n BDE w/ TD BDE w/o TD non-BDE gender male female ageyears 16 17 18 19 num postal~e	ata = s = Odds Ratio 1.803 1.000 1.582 1.000 0.682 1.000 3.079 2.750 4.748	24 861 Linearized Std. Err. 0.543 (base) 0.533 (base) 0.155 (base) 1.400 1.299 2.217	t 1.959 1.361 -1.683 2.473 2.142 3.336	Number of Population Design df F(7, Prob > F P> t 0.050 0.174 0.093 0.014 0.033 0.001	obs = n size = 831) = [95% Conf. 0.999 0.817 0.437 1.261 1.088 1.899	861 189318.92 837 2.65 0.0102 Interval] 3.255 3.064 1.065 7.517 6.951 11.872
Number of stra Number of PSU: never_to_job classifica~n BDE w/o TD BDE w/o TD non-BDE gender male female ageyears 16 17 18 19 num_postal~e Rural	Ata = Ddds Ratio 0dds Ratio 1.803 1.000 1.582 1.000 0.682 1.000 3.079 2.750 4.748 1.000	24 861 Linearized Std. Err. 0.543 (base) 0.533 (base) 0.155 (base) 1.400 1.299 2.217 (base)	t 1.959 1.361 -1.683 2.473 2.142 3.336	Number of Population Design df F(7, Prob > F P> t 0.050 0.174 0.093 0.014 0.033 0.001	obs = n size = 831) = [95% Conf. 0.999 0.817 0.437 1.261 1.088 1.899	861 189318.92 837 2.65 0.0102 Interval] 3.255 3.064 1.065 7.517 6.951 11.872
Number of stra Number of PSUs classifica~n BDE w/ TD BDE w/o TD non-BDE gender male female ageyears 16 17 18 19 num_postal~e Rural Urban	ata = s = Odds Ratio 1.803 1.000 1.582 1.000 0.682 1.000 3.079 2.750 4.748 1.000 0.719	Linearized Std. Err. 0.543 (base) 0.155 (base) 1.400 1.299 2.217 (base) 0.155	t 1.959 1.361 -1.683 2.473 2.142 3.336 -1.528	Number of Population Design df F(7, Prob > F P> t 0.050 0.174 0.093 0.014 0.033 0.001 0.127	obs = n size = 831) = [95% Conf. 0.999 0.817 0.437 1.261 1.088 1.899 0.471	861 189318.92 837 2.65 0.0102 Interval] 3.255 3.064 1.065 7.517 6.951 11.872 1.098
Number of stra Number of PSU: never_to_job classifica~n BDE w/o TD non-BDE gender male female ageyears 16 17 18 19 num_postal~e Rural Urban cons	ata = s = Odds Ratio 1.803 1.000 1.582 1.000 0.682 1.000 3.079 2.750 4.748 1.000 0.719 0.070	Linearized Std. Err. 0.543 (base) 0.533 (base) 0.155 (base) 1.400 1.299 2.217 (base) 0.155 0.036	t 1.959 1.361 -1.683 2.473 2.142 3.336 -1.528 -1.528 -5.202	Number of Population Design df F(7, Prob > F P> t 0.050 0.174 0.093 0.014 0.033 0.001 0.127 0.000	obs = n size = 831) = [95% Conf. 0.999 0.817 0.437 1.261 1.088 1.899 0.471 0.026	861 189318.92 837 2.65 0.0102 Interval] 3.255 3.064 1.065 7.517 6.951 11.872 1.098 0.191

Figure 5-23: How often do young drivers drive to/from recreational or social activities, monthly?

Number of strata	= 24	N	umber of obs	= 861
Number of PSUs	= 861	P	Population size	
		D	esign df	= 837
How often have				
you driven to				
regreational or				
recreational of				
activities		classif	ication	
mont	BDE w/ TD	BDE w/o TD	non-BDE	Total
Never	17.01	19.43	32.56	20.84
	[13.31,21.49]	[13.93,26.42]	[25.91,40]	[17.88,24.14]
Once	14.84	21.7	13.63	16.75
	[11.32,19.21]	[15.08,30.19]	[9.348,19.45]	[13.79,20.21]
Sometimes	31.24	21.66	23.13	26.63
	[26.48,36.42]	[15.38,29.6]	[17.44,30]	[23.25,30.31]
Often	26.93	22.09	19.17	23.88
	[22.28,32.14]	[15.47,30.53]	[13.68,26.2]	[20.47,27.66]
Very Often	9.989	15.12	11.5	11.9
_	[7.219,13.67]	[9.621,22.97]	[7.773,16.69]	[9.421,14.92]
Total	100	100	100	100
				·····
[95% conf	idence intervals	for column perc	entages]	
Pearson:				
Uncorrected	chi2(8)	= 34.1743		
Design-based	F(7.38, 6176.20)	= 2.9344	P = 0.0038	

Figure 5-24: Logistic regression

Number of str	ata =	24		Number of	obs =	861
Number of PSU	s =	861		Population	n size =	189318.92
				Design df	=	837
				F(6,	832) =	9.73
				Prob > F	=	0.0000
		Linearized				
never_to_~al	Odds Ratio	Std. Err.	t	P> t	[95% Conf.	Interval]
classifica~n						
BDE w/ TD	1.000	(base)				
BDE w/o TD	0.845	0.222	-0.642	0.521	0.505	1.415
non-BDE	0.724	0.165	-1.415	0.157	0.463	1.133
gender						
male	1.000	(base)				
female	0.958	0.205	-0.201	0.841	0.629	1.459
ageveare						
uyeycais 16	1 000	(base)				
17	1 923	(Dase) 1 210	6 225	0 000	2 9 2 7	7 920
10	4.023	1.219	6 225	0.000	2.937	11 002
10	0.257	1.825	0.200	0.000	3.530	11.093
19	3.872	1.056	4.967	0.000	2.268	6.612
_cons	1.173	0.285	0.658	0.510	0.729	1.889
(running logi	t on estimati	on sample)				
(running logi Survey: Logis Number of str	t on estimati tic regressic ata =	on sample) on 24		Number of	obs =	861
(running logi Survey: Logis Number of str Number of PSU	t on estimati tic regressic ata = s =	on sample) n 24 861		Number of Population	obs = n size =	861 189318.92
(running logi Survey: Logis Number of str Number of PSU	t on estimati tic regressic ata = s =	on sample) n 24 861		Number of Population Design df	obs = n size = =	861 189318.92 837
(running logi Survey: Logis Number of str Number of PSU	t on estimati tic regressic ata = s =	on sample) n 24 861		Number of Population Design df F(6,	obs = n size = 832) =	861 189318.92 837 9.73
(running logi Survey: Logis Number of str Number of PSU	t on estimati tic regressic ata = s =	on sample) n 24 861		Number of Population Design df F(6, Prob > F	obs = n size = 832) = =	861 189318.92 837 9.73 0.0000
(running logi Survey: Logis Number of str Number of PSU	t on estimati tic regressic ata = s =	on sample) m 24 861 Linearized		Number of Population Design df F(6, Prob > F	obs = n size = 832) =	861 189318.92 837 9.73 0.0000
(running logi Survey: Logis Number of str Number of PSU 	t on estimati tic regressic ata = s = Odds Ratio	on sample) n 24 861 Linearized Std. Err.	t	Number of Population Design df F(6, Prob > F P> t	obs = n size = 832) = 	861 189318.92 837 9.73 0.0000 Interval]
(running logi Survey: Logis Number of str Number of PSU 	t on estimati tic regressic ata = s = Odds Ratio	on sample) n 24 861 Linearized Std. Err.	t	Number of Population Design df F(6, Prob > F P> t	obs = n size = 832) = [95% Conf.	861 189318.92 837 9.73 0.0000 Interval]
<pre>(running logi Survey: Logis Number of str Number of PSU </pre>	t on estimati tic regressic ata = s = Odds Ratio	on sample) n 24 861 Linearized Std. Err. 0.311	t 0.642	Number of Populatio Design df F(6, Prob > F P> t 0.521	obs = n size = 832) = [95% Conf. 0.707	861 189318.92 837 9.73 0.0000 Interval]
<pre>(running logi Survey: Logis Number of str Number of PSU </pre>	t on estimati tic regressic ata = s = Odds Ratio	on sample) m 24 861 Linearized Std. Err. 0.311 (base)	t 0.642	Number of Populatio Design df F(6, Prob > F P> t 0.521	obs = n size = 832) = [95% Conf. 0.707	861 189318.92 837 9.73 0.0000 Interval]
<pre>(running logi Survey: Logis Number of str Number of PSU </pre>	t on estimati tic regressic ata = s = Odds Ratio 1.183 1.000 0.857	on sample) m 24 861 Linearized Std. Err. 0.311 (base) 0.233	t 0.642 -0.568	Number of Populatio: Design df F(6, Prob > F P> t 0.521 0.570	obs = n size = 832) = [95% Conf. 0.707 0.503	861 189318.92 837 9.73 0.0000 Interval] 1.981 1.460
<pre>(running logi Survey: Logis Number of str Number of PSU </pre>	t on estimati tic regressic ata = s = Odds Ratio 1.183 1.000 0.857	on sample) on 24 861 Linearized Std. Err. 0.311 (base) 0.233	t 0.642 -0.568	Number of Population Design df F(6, Prob > F P> t 0.521 0.570	obs = n size = 832) = [95% Conf. 0.707 0.503	861 189318.92 837 9.73 0.0000 Interval] 1.981 1.460
<pre>(running logi Survey: Logis Number of str Number of PSU </pre>	t on estimati tic regressic ata = s = Odds Ratio 1.183 1.000 0.857	on sample) m 24 861 Linearized Std. Err. 0.311 (base) 0.233	t 0.642 -0.568	Number of Population Design df F(6, Prob > F P> t 0.521 0.570	obs = n size = 832) = [95% Conf. 0.707 0.503	861 189318.92 837 9.73 0.0000 Interval] 1.981 1.460
<pre>(running logi Survey: Logis Number of str Number of PSU </pre>	t on estimati tic regressic ata = s = Odds Ratio 1.183 1.000 0.857 1.000	on sample) m 24 861 Linearized Std. Err. 0.311 (base) 0.233 (base)	t 0.642 -0.568	Number of Population Design df F(6, Prob > F P> t 0.521 0.570	obs = n size = 832) = [95% Conf. 0.707 0.503	861 189318.92 837 9.73 0.0000 Interval] 1.981 1.460
<pre>(running logi Survey: Logis Number of str Number of PSU </pre>	t on estimati tic regressic ata = s = Odds Ratio 1.183 1.000 0.857 1.000 0.958	on sample) on 24 861 Linearized Std. Err. 0.311 (base) 0.233 (base) 0.205	t 0.642 -0.568 -0.201	Number of Population Design df F(6, Prob > F P> t 0.521 0.570 0.841	obs = n size = 832) = [95% Conf. 0.707 0.503 0.629	861 189318.92 837 9.73 0.0000 Interval] 1.981 1.460 1.459
<pre>(running logi Survey: Logis Number of str Number of PSU never_to_~al classifica~n BDE w/ TD BDE w/ TD BDE w/o TD non-BDE gender male female ageyears</pre>	t on estimati tic regressic ata = s = Odds Ratio 1.183 1.000 0.857 1.000 0.958	on sample) m 24 861 Linearized Std. Err. 0.311 (base) 0.233 (base) 0.205	t 0.642 -0.568 -0.201	Number of Population Design df F(6, Prob > F P> t 0.521 0.570 0.841	obs = n size = 832) = [95% Conf. 0.707 0.503 0.629	861 189318.92 837 9.73 0.0000 Interval] 1.981 1.460 1.459
<pre>(running logi Survey: Logis Number of str Number of PSU never_to_~al classifica~n BDE w/ TD BDE w/o TD non-BDE gender male female ageyears 16</pre>	t on estimati tic regressic ata = s = Odds Ratio 1.183 1.000 0.857 1.000 0.958 1.000	on sample) on 24 861 Linearized Std. Err. 0.311 (base) 0.233 (base) 0.205 (base)	t 0.642 -0.568 -0.201	Number of Population Design df F(6, Prob > F P> t 0.521 0.570 0.841	obs = n size = 832) = [95% Conf. 0.707 0.503 0.629	861 189318.92 837 9.73 0.0000 Interval] 1.981 1.460 1.459
<pre>(running logi Survey: Logis Number of str Number of PSU </pre>	t on estimati tic regressic ata = s = Odds Ratio 1.183 1.000 0.857 1.000 0.958 1.000 4.823	on sample) m 24 861 Linearized Std. Err. 0.311 (base) 0.233 (base) 0.205 (base) 1.219	t 0.642 -0.568 -0.201 6.225	Number of Population Design df F(6, Prob > F P> t 0.521 0.570 0.841 0.000	obs = n size = 832) = [95% Conf. 0.707 0.503 0.629 2.937	861 189318.92 837 9.73 0.0000 Interval] 1.981 1.460 1.459 7.920
<pre>(running logi Survey: Logis Number of str Number of PSU never_to_~al classifica~n BDE w/ TD BDE w/ TD BDE w/o TD non-BDE gender male female ageyears 16 17 18</pre>	t on estimati tic regressic ata = s = Odds Ratio 1.183 1.000 0.857 1.000 0.958 1.000 4.823 6.257	on sample) m 24 861 Linearized Std. Err. 0.311 (base) 0.233 (base) 0.205 (base) 1.219 1.825	t 0.642 -0.568 -0.201 6.225 6.286	Number of Population Design df F(6, Prob > F P> t 0.521 0.570 0.841 0.000 0.000	obs = n size = 832) = [95% Conf. 0.707 0.503 0.629 2.937 3.530	861 189318.92 837 9.73 0.0000 Interval] 1.981 1.460 1.459 7.920 11.093
<pre>(running logi Survey: Logis Number of str Number of PSU never_to_~al classifica~n BDE w/ TD BDE w/ TD BDE w/o TD non-BDE gender male female ageyears 16 17 18 19</pre>	t on estimati tic regressic ata = s = Odds Ratio 1.183 1.000 0.857 1.000 0.958 1.000 4.823 6.257 3.872	on sample) on 24 861 Linearized Std. Err. 0.311 (base) 0.233 (base) 0.205 (base) 1.219 1.825 1.056	t 0.642 -0.568 -0.201 6.225 6.286 4.967	Number of Population Design df F(6, Prob > F P> t 0.521 0.570 0.841 0.000 0.000 0.000	obs = n size = 832) = [95% Conf. 0.707 0.503 0.629 2.937 3.530 2.268	861 189318.92 837 9.73 0.0000 Interval] 1.981 1.460 1.459 7.920 11.093 6.612
<pre>(running logi Survey: Logis Number of str Number of PSU never_to_~al classifica~n BDE w/ TD BDE w/ TD BDE w/o TD non-BDE gender male female ageyears 16 17 18 19</pre>	t on estimati tic regressic ata = s = Odds Ratio 1.183 1.000 0.857 1.000 0.958 1.000 4.823 6.257 3.872 0.991	on sample) m 24 861 Linearized Std. Err. 0.311 (base) 0.233 (base) 0.205 (base) 1.219 1.825 1.056 0.299	t 0.642 -0.568 -0.201 6.225 6.286 4.967 -0.029	Number of Population Design df F(6, Prob > F P> t 0.521 0.570 0.841 0.000 0.000 0.000 0.000 0.000	obs = n size = 832) = [95% Conf. 0.707 0.503 0.629 2.937 3.530 2.268 0.548	861 189318.92 837 9.73 0.0000 Interval] 1.981 1.460 1.459 7.920 11.093 6.612 1.792

Number of st	trata =	24	Number of	obs =	8
Number of PS	SUs =	861	Populatio	on size = 18	9318.
			Design df	=	8
How often					
have you					
driven to					
practice					
driving,		classif	ication		
monthly?	BDE w/ T	BDE w/o	non-BDE	Total	
Never	5.9	8.351	21.25	9.696	
	[3.713,9.253]	[4.777,14.2]	[15.55,28.34]	[7.61,12.28]	
Once	5.981	13	10.05	8.989	
	[3.857,9.164]	[7.959,20.53]	[5.884,16.66]	[6.751,11.88]	
Sometimes	25.79	31.7	26.51	27.79	
	[21.41,30.72]	[24.08,40.45]	[20.29,33.84]	[24.25,31.64]	
Often	35.48	22.66	24.01	29.19	
	[30.43,40.88]	[16.23,30.69]	[18.03,31.22]	[25.67,32.99]	
Very Often	26.84	24.28	18.17	24.33	
	[22.26,31.98]	[17.34,32.9]	[13.6,23.84]	[20.95,28.07]	
Total	100	100	100	100	
Key: colu [959	umn percentages & confidence int	ervals for colu	mn percentages]		
Pearson:					
Uncorrec	cted chi2(8)	= 56.5	834		
Design-b	pased F(7.49, 6	266.99)= 4.6	995 P = 0.0	0000	

Figure 5-25: How often do young drivers drive to practice driving, monthly?

Figure 5-26: Logistic regression

Number of str	ata =	24		Number of	obs =	861
Number of PSU	s =	861		Population	n size =	189318.92
				Design df	=	837
				F(6,	832) =	9.08
				Prob > F	=	0.0000
	1					
		Linearized				
never_to_p~e	Odds Ratio	Std. Err.	t	P> t	[95% Conf.	Interval]
classifica~n						
BDE w/ TD	1.000	(base)				
BDE w/o TD	0.666	0.274	-0.990	0.322	0.297	1.492
non-BDE	0.422	0.131	-2.769	0.006	0.229	0.778
gender						
male	1.000	(base)				
female	0.914	0.284	-0.288	0.773	0.497	1.683
adevears						
uyeyears 16	1 000	(base)				
17	6 189	(Dase) 2 106	5 526	0 000	2 2 2 0	12 609
10	0.409	2.190	3.520	0.000	3.339	12.009
10	4.1/5	1.440	4.143	0.000	2.121	8.210
19	8.221	3.507	4.938	0.000	3.558	18.992
_cons	3.625	1.230	3.794	0.000	1.862	7.057
(running logi	t on estimati	on sample)				
(running logi Survey: Logis	t on estimati tic regressic	on sample) n				
(running logi Survey: Logis Number of str	t on estimati tic regressic ata =	on sample) n 24		Number of	obs =	861
(running logi Survey: Logis Number of str Number of PSU	t on estimati tic regressic ata = s =	on sample) n 24 861		Number of Population	obs = n size =	861 189318.92
(running logi Survey: Logis Number of str Number of PSU	t on estimati tic regressic ata = s =	on sample) n 24 861		Number of Population Design df	obs = n size = =	861 189318.92 837
(running logi Survey: Logis Number of str Number of PSU	t on estimati tic regressic ata = s =	on sample) on 24 861		Number of Population Design df F(6, Prob > F	obs = n size = 832) =	861 189318.92 9.08 0.0000
(running logi Survey: Logis Number of str Number of PSU	t on estimati tic regressic ata = s =	on sample) n 24 861		Number of Population Design df F(6, Prob > F	obs = n size = 832) = =	861 189318.92 837 9.08 0.0000
(running logi Survey: Logis Number of str Number of PSU	t on estimati tic regressic ata = s =	on sample) on 24 861 Linearized		Number of Population Design df F(6, Prob > F	obs = n size = 832) = =	861 189318.92 837 9.08 0.0000
(running logi Survey: Logis Number of str Number of PSU 	t on estimati tic regressic ata = s = Odds Ratio	on sample) n 24 861 Linearized Std. Err.	t	Number of Population Design df F(6, Prob > F P> t	obs = n size = 832) = = [95% Conf.	861 189318.92 837 9.08 0.0000 Interval]
<pre>(running logi Survey: Logis Number of str Number of PSU </pre>	t on estimati tic regressic ata = s = Odds Ratio	on sample) n 24 861 Linearized Std. Err.	t	Number of Population Design df F(6, Prob > F P> t	obs = n size = 832) = [95% Conf.	861 189318.92 837 9.08 0.0000 Interval]
<pre>(running logi Survey: Logis Number of str Number of PSU </pre>	t on estimati tic regressic ata = s = Odds Ratio	on sample) n 24 861 Linearized Std. Err. 0.618	t 0.990	Number of Population Design df F(6, Prob > F P> t 0.322	obs = n size = 832) = [95% Conf. 0.670	861 189318.92 837 9.08 0.0000 Interval]
<pre>(running logi Survey: Logis Number of str Number of PSU </pre>	t on estimati tic regressic ata = s = Odds Ratio 1.503 1.000	on sample) n 24 861 Linearized Std. Err. 0.618 (base)	t 0.990	Number of Populatio Design df F(6, Prob > F P> t 0.322	obs = n size = 832) = [95% Conf. 0.670	861 189318.92 837 9.08 0.0000 Interval] 3.368
<pre>(running logi Survey: Logis Number of str Number of PSU </pre>	t on estimati tic regressic ata = s = Odds Ratio 1.503 1.000 0.634	on sample) m 24 861 Linearized Std. Err. 0.618 (base) 0.221	t 0.990 -1.306	Number of Population Design df F(6, Prob > F P> t 0.322 0.192	obs = n size = 832) = [95% Conf. 0.670 0.320	861 189318.92 837 9.08 0.0000 Interval] 3.368 1.257
<pre>(running logi Survey: Logis Number of str Number of PSU </pre>	t on estimati tic regressic ata = s = Odds Ratio 1.503 1.000 0.634	on sample) on 24 861 Linearized Std. Err. 0.618 (base) 0.221	t 0.990 -1.306	Number of Population Design df F(6, Prob > F P> t 0.322 0.192	obs = n size = 832) = [95% Conf. 0.670 0.320	861 189318.92 837 9.08 0.0000 Interval] 3.368 1.257
<pre>(running logi Survey: Logis Number of str Number of PSU </pre>	t on estimati tic regressic ata = s = Odds Ratio 1.503 1.000 0.634	on sample) m 24 861 Linearized Std. Err. 0.618 (base) 0.221 (base)	t 0.990 -1.306	Number of Population Design df F(6, Prob > F P> t 0.322 0.192	obs = n size = 832) = [95% Conf. 0.670 0.320	861 189318.92 837 9.08 0.0000 Interval] 3.368 1.257
<pre>(running logi Survey: Logis Number of str Number of PSU </pre>	t on estimati tic regressic ata = s = Odds Ratio 1.503 1.000 0.634 1.000	on sample) m 24 861 Linearized Std. Err. 0.618 (base) 0.221 (base)	t 0.990 -1.306	Number of Population Design df F(6, Prob > F P> t 0.322 0.192	obs = n size = 832) = [95% Conf. 0.670 0.320	861 189318.92 837 9.08 0.0000 Interval] 3.368 1.257
<pre>(running logi Survey: Logis Number of str Number of PSU </pre>	t on estimati tic regressic ata = s = Odds Ratio 1.503 1.000 0.634 1.000 0.914	on sample) on 24 861 Linearized Std. Err. 0.618 (base) 0.221 (base) 0.284	t 0.990 -1.306 -0.288	Number of Population Design df F(6, Prob > F P> t 0.322 0.192 0.773	obs = n size = 832) = [95% Conf. 0.670 0.320 0.497	861 189318.92 837 9.08 0.0000 Interval] 3.368 1.257 1.683
<pre>(running logi Survey: Logis Number of str Number of PSU never_to_p~e classifica~n BDE w/ TD BDE w/ TD BDE w/o TD non-BDE gender male female ageyears</pre>	t on estimati tic regressic ata = s = Odds Ratio 1.503 1.000 0.634 1.000 0.914	on sample) m 24 861 Linearized Std. Err. 0.618 (base) 0.221 (base) 0.284	t 0.990 -1.306 -0.288	Number of Population Design df F(6, Prob > F P> t 0.322 0.192 0.773	obs = n size = 832) = [95% Conf. 0.670 0.320 0.497	861 189318.92 837 9.08 0.0000 Interval] 3.368 1.257 1.683
<pre>(running logi Survey: Logis Number of str Number of PSU never_to_p~e classifica~n BDE w/ TD BDE w/o TD non-BDE gender male female ageyears 16</pre>	t on estimati tic regressic ata = s = Odds Ratio 1.503 1.000 0.634 1.000 0.914 1.000	on sample) on 24 861 Linearized Std. Err. 0.618 (base) 0.221 (base) 0.284 (base)	t 0.990 -1.306 -0.288	Number of Population Design df F(6, Prob > F P> t 0.322 0.192 0.773	obs = n size = 832) = [95% Conf. 0.670 0.320 0.497	861 189318.92 837 9.08 0.0000 Interval] 3.368 1.257 1.683
<pre>(running logi Survey: Logis Number of str Number of PSU </pre>	t on estimati tic regressic ata = s = Odds Ratio 1.503 1.000 0.634 1.000 0.914 1.000 6.489	on sample) on 24 861 Linearized Std. Err. 0.618 (base) 0.221 (base) 0.284 (base) 2.196	t 0.990 -1.306 -0.288 5.526	Number of Population Design df F(6, Prob > F P> t 0.322 0.192 0.773 0.000	obs = n size = 832) = [95% Conf. 0.670 0.320 0.497 3.339	861 189318.92 837 9.08 0.0000 Interval] 3.368 1.257 1.683 12.609
<pre>(running logi Survey: Logis Number of str Number of PSU never_to_p~e classifica~n BDE w/ TD BDE w/ TD BDE w/o TD non-BDE gender male female ageyears 16 17 18</pre>	t on estimati tic regressic ata = s = Odds Ratio 1.503 1.000 0.634 1.000 0.914 1.000 6.489 4.175	on sample) on 24 861 Linearized Std. Err. 0.618 (base) 0.221 (base) 0.284 (base) 2.196 1.440	t 0.990 -1.306 -0.288 5.526 4.143	Number of Population Design df F(6, Prob > F P> t 0.322 0.192 0.773 0.000 0.000	obs = n size = 832) = [95% Conf. 0.670 0.320 0.497 3.339 2.121	861 189318.92 837 9.08 0.0000 Interval] 3.368 1.257 1.683 12.609 8.216
<pre>(running logi Survey: Logis Number of str Number of PSU never_to_p~e classifica~n BDE w/ TD BDE w/ TD BDE w/o TD non-BDE gender male female ageyears 16 17 18 19</pre>	t on estimati tic regressic ata = s = Odds Ratio 1.503 1.000 0.634 1.000 0.914 1.000 6.489 4.175 8.221	on sample) on 24 861 Linearized Std. Err. 0.618 (base) 0.221 (base) 0.284 (base) 2.196 1.440 3.507	t 0.990 -1.306 -0.288 5.526 4.143 4.938	Number of Population Design df F(6, Prob > F P> t 0.322 0.192 0.773 0.000 0.000 0.000	obs = n size = 832) = [95% Conf. 0.670 0.320 0.497 3.339 2.121 3.558	861 189318.92 837 9.08 0.0000 Interval] 3.368 1.257 1.683 12.609 8.216 18.992
<pre>(running logi Survey: Logis Number of str Number of PSU never_to_p~e classifica~n BDE w/ TD BDE w/ TD BDE w/o TD non-BDE gender male female ageyears 16 17 18 19</pre>	t on estimati tic regressic ata = s = Odds Ratio 1.503 1.000 0.634 1.000 0.914 1.000 6.489 4.175 8.221 2.412	on sample) m 24 861 Linearized Std. Err. 0.618 (base) 0.221 (base) 0.284 (base) 2.196 1.440 3.507 0.889	t 0.990 -1.306 -0.288 5.526 4.143 4.938 2.389	Number of Population Design df F(6, Prob > F P> t 0.322 0.192 0.773 0.000 0.000 0.000 0.000 0.000	obs = n size = 832) = [95% Conf. 0.670 0.320 0.497 3.339 2.121 3.558 1.170	861 189318.92 837 9.08 0.0000 Interval] 3.368 1.257 1.683 12.609 8.216 18.992 4.972

Number of st	trata =	24	Number of	obs =	86
Number of PS	SUs =	861	Populatio	on size = 189	318.9
			Design df	=	83
How often					
have you driven					
just to go					
for a					
arive,		classif	lcation	met - 1	
montniy?	BDE W/ T	RDE M/O	non-BDE	Total	
Never	72.85	66.69	43.4	65.11	
	[67.93,77.27]	[58.3,74.13]	[37.69,49.29]	[61.45,68.6]	
Once	11.24	13.26	19.6	13.52	
	[8.327,15]	[8.654,19.79]	[13.74,27.17]	[11.03,16.47]	
Sometimes	10.46	11.25	18.87	12.37	
	[7.627,14.19]	[6.821,17.99]	[13.11,26.39]	[9.925,15.31]	
Often	3.966	4.706	11.11	5.606	
	[2.48,6.283]	[2.177,9.877]	[6.595,18.11]	[4.041,7.728]	
Very Often	1.483	4.099	7.022	3.397	
	[.606,3.585]	[1.838,8.889]	[3.669,13.03]	[2.182,5.252]	
Total	100	100	100	100	
Key: colu [95%	umn percentages s confidence int	ervals for colu	umn percentages]		
Deemsent					
Uncorrec	cted chi2(8)	= 52.9	245		
Design-b	pased F(7.58, 6	345.21)= 4.5	9450 P = 0.0	000	

Figure 5-27: How often do young drivers drive just to go for a drive, monthly?

Figure 5-28: Logistic regression

	ald -	24		Number of	obs =	861
Number of PSUs	з =	861		Populatio	n size =	189318.92
				Design df	=	837
				F(6,	832) =	23.39
				Prob > F	=	0.0000
		Linearized				
never_to_g~e	Odds Ratio	Std. Err.	t	P> t	[95% Conf.	Interval]
classifica~n						
BDE w/ TD	1.000	(base)				
BDE w/o TD	1.586	0.374	1.958	0.051	0.999	2.520
non-BDE	2.383	0.486	4.256	0.000	1.596	3.556
gender						
male	1.000	(base)				
female	0.831	0.159	-0.966	0.334	0.570	1.210
ageveare						
16	1 000	(hase)				
17	0 173	0 038	-7 937	0 000	0 112	0 267
19	0.175	0.030	-9 153	0.000	0.112	0.207
10	0.094	0.024	-9.155	0.000	0.057	0.150
19	0.101	0.025	-9.100	0.000	0.001	0.105
_cons	2.772	0.638	4.432	0.000	1.765	4.354
Survey: Logist	tic regressio	'n				
Number of stra	ata =					
Number of PSUs		24		Number of	obs =	861
	3 =	24 861		Number of Populatio	obs = n size =	861 189318.92
	3 =	24 861		Number of Populatio Design df	obs = n size = =	861 189318.92 837
	s =	24 861		Number of Population Design df F(6,	obs = n size = 832) =	861 189318.92 837 23.39
	s =	24 861		Number of Populatio Design df F(6, Prob > F	obs = n size = 832) = =	861 189318.92 837 23.39 0.0000
	s =	24 861		Number of Populatio Design df F(6, Prob > F	obs = n size = 832) = =	861 189318.92 837 23.39 0.0000
	Odds Ratio	24 861 Linearized Std. Err.	t	Number of Population Design df F(6, Prob > F P> t	obs = n size = 832) = [95% Conf.	861 189318.92 837 23.39 0.0000 Interval]
never_to_g~e	Odds Ratio	24 861 Linearized Std. Err.	t	Number of Populatio Design df F(6, Prob > F P> t	obs = n size = 832) = = [95% Conf.	861 189318.92 837 23.39 0.0000 Interval]
never_to_g~e classifica~n	Odds Ratio	24 861 Linearized Std. Err.	_1 958	Number of Population Design df F(6, Prob > F P> t	obs = n size = 832) = [95% Conf.	861 189318.92 837 23.39 0.0000 Interval]
never_to_g~e classifica~n BDE w/ TD	Odds Ratio	24 861 Linearized Std. Err. 0.149	t -1.958	Number of Population Design df F(6, Prob > F P> t 0.051	obs = n size = 832) = [95% Conf. 0.397	861 189318.92 837 23.39 0.0000 Interval]
never_to_g~e classifica~n BDE w/ TD BDE w/o TD pon=BDE	Odds Ratio	24 861 Linearized Std. Err. 0.149 (base) 0.371	t -1.958	Number of Population Design df F(6, Prob > F P> t 0.051 0.100	obs = n size = 832) = [95% Conf. 0.397	861 189318.92 837 23.39 0.0000 Interval] 1.001 2.438
never_to_g~e classifica~n BDE w/ TD BDE w/o TD non-BDE	Odds Ratio 0.630 1.000 1.502	24 861 Linearized Std. Err. 0.149 (base) 0.371	t -1.958 1.647	Number of Population Design df F(6, Prob > F P> t 0.051 0.100	obs = n size = 832) = [95% Conf. 0.397 0.925	861 189318.92 837 23.39 0.0000 Interval] 1.001 2.438
never_to_g~e classifica~n BDE w/ TD BDE w/o TD non-BDE gender	Odds Ratio 0.630 1.502	24 861 Linearized Std. Err. 0.149 (base) 0.371	t -1.958 1.647	Number of Population Design df F(6, Prob > F P> t 0.051 0.100	obs = n size = 832) = [95% Conf. 0.397 0.925	861 189318.92 837 23.39 0.0000 Interval] 1.001 2.438
never_to_g~e classifica~n BDE w/ TD BDE w/o TD non-BDE gender male	Odds Ratio 0.630 1.000 1.502 1.000	24 861 Linearized Std. Err. 0.149 (base) 0.371 (base)	t -1.958 1.647	Number of Population Design df F(6, Prob > F P> t 0.051 0.100	obs = n size = 832) = [95% Conf. 0.397 0.925	861 189318.92 837 23.39 0.0000 Interval] 1.001 2.438
never_to_g~e classifica~n BDE w/ TD BDE w/o TD non-BDE gender male female	Odds Ratio 0.630 1.000 1.502 1.000 0.831	24 861 Linearized Std. Err. 0.149 (base) 0.371 (base) 0.159	t -1.958 1.647 -0.966	Number of Population Design df F(6, Prob > F P> t 0.051 0.100 0.334	obs = n size = 832) = [95% Conf. 0.397 0.925 0.570	861 189318.92 837 23.39 0.0000 Interval] 1.001 2.438 1.210
never_to_g~e classifica~n BDE w/ TD BDE w/o TD non-BDE gender male female agevears	Odds Ratio 0.630 1.000 1.502 1.000 0.831	24 861 Linearized Std. Err. 0.149 (base) 0.371 (base) 0.159	t -1.958 1.647 -0.966	Number of Population Design df F(6, Prob > F P> t 0.051 0.100 0.334	obs = n size = 832) = [95% Conf. 0.397 0.925 0.570	861 189318.92 837 23.39 0.0000 Interval] 1.001 2.438 1.210
never_to_g~e classifica~n BDE w/ TD BDE w/o TD non-BDE gender male female ageyears 16	Odds Ratio 0.630 1.000 1.502 1.000 0.831 1.000	24 861 Linearized Std. Err. 0.149 (base) 0.371 (base) 0.159 (base)	t -1.958 1.647 -0.966	Number of Population Design df F(6, Prob > F P> t 0.051 0.100 0.334	obs = n size = 832) = [95% Conf. 0.397 0.925 0.570	861 189318.92 837 23.39 0.0000 Interval] 1.001 2.438 1.210
never_to_g~e classifica~n BDE w/ TD BDE w/o TD non-BDE gender male female ageyears 16 17	Odds Ratio 0.630 1.000 1.502 1.000 0.831 1.000 0.173	24 861 Linearized Std. Err. 0.149 (base) 0.371 (base) 0.159 (base) 0.038	t -1.958 1.647 -0.966	Number of Population Design df F(6, Prob > F P> t 0.051 0.100 0.334	obs = n size = 832) = [95% Conf. 0.397 0.925 0.570	861 189318.92 837 23.39 0.0000 Interval] 1.001 2.438 1.210
never_to_g~e classifica~n BDE w/ TD BDE w/o TD non-BDE gender male female ageyears 16 17	Odds Ratio 0.630 1.000 1.502 1.000 0.831 1.000 0.173 0.04	24 861 Linearized Std. Err. 0.149 (base) 0.371 (base) 0.159 (base) 0.038 0.024	t -1.958 1.647 -0.966 -7.937	Number of Population Design df F(6, Prob > F P> t 0.051 0.100 0.334 0.000 0.000	obs = n size = 832) = [95% Conf. 0.397 0.925 0.570 0.112 0.057	861 189318.92 837 23.39 0.0000 Interval] 1.001 2.438 1.210 0.267 0.156
never_to_g~e classifica~n BDE w/ TD BDE w/o TD non-BDE gender male female ageyears 16 17 18 19	Odds Ratio 0.630 1.000 1.502 1.000 0.831 1.000 0.173 0.094 0.101	24 861 Linearized Std. Err. 0.149 (base) 0.371 (base) 0.159 (base) 0.038 0.024 0.025	t -1.958 1.647 -0.966 -7.937 -9.153 -9.100	Number of Population Design df F(6, Prob > F P> t 0.051 0.100 0.334 0.000 0.000 0.000	obs = n size = 832) = [95% Conf. 0.397 0.925 0.570 0.112 0.057 0.061	861 189318.92 837 23.39 0.0000 Interval] 1.001 2.438 1.210 0.267 0.156 0.165
never_to_g~e classifica~n BDE w/ TD BDE w/o TD non-BDE gender male female ageyears 16 17 18 19	Odds Ratio 0.630 1.000 1.502 1.000 0.831 1.000 0.173 0.094 0.101	24 861 Linearized Std. Err. (base) 0.371 (base) 0.159 (base) 0.038 0.024 0.025	t -1.958 1.647 -0.966 -7.937 -9.153 -9.100	Number of Population Design df F(6, Prob > F P> t 0.051 0.100 0.334 0.000 0.000 0.000	obs = n size = 832) = [95% Conf. 0.397 0.925 0.570 0.112 0.057 0.061	861 189318.92 837 23.39 0.0000 Interval] 1.001 2.438 1.210 0.267 0.156 0.165

Figure 5-29: Do young drivers have unlimited access to a vehicle?

Number of strata Number of PSUs	= 24 = 980		Number of obs Population size Design df	= 980 = 224603.65 = 956
	Do you have	unlimited use	of vehicle?	
classification	No	Yes	Total	
BDE w/ TD	47 [41.89,52.16]	53 [47.84,58.11]	100	
BDE w/o TD	58.27 [50.16,65.95]	41.73 [34.05,49.84]	100	
non-BDE	58.19 [50.93,65.12]	41.81 [34.88,49.07]	100	
Total	53 [49.17,56.79]	47 [43.21,50.83]	100	
Key: row perce [95% conf	entages Eidence interval	s for row perce	entages]	
Pearson: Uncorrected Design-based	chi2(2) F(1,91, 1822,6	= 12.3702 (4) = 4 1019	P = 0.0182	

Figure 5-30: Logistic regression

Number of stra	ata =	24		Number of	obs =	980
Number of PSUs	s =	980		Population	n size =	224603.65
				Design df	=	956
				F(6,	951) =	2.44
				Prob > F	=	0.0238
<u> </u>		Linearized				
unlimited_~e	Odds Ratio	Std. Err.	t	P> t	[95% Conf.	Interval]
classifica~n						
BDE w/ TD	1.000	(base)				
BDE w/o TD	0.604	0.118	-2.572	0.010	0.411	0.887
non-BDE	0.682	0.120	-2.180	0.029	0.483	0.962
gender						
male	1.000	(base)				
female	1.372	0.217	1.998	0.046	1.006	1.871
ageyears						
16	1.000	(base)				
17	1.169	0.271	0.675	0.500	0.742	1.843
18	1.331	0.318	1.198	0.231	0.833	2.125
19	1.453	0.354	1.536	0.125	0.901	2.343
_cons	0.747	0.172	-1.263	0.207	0.475	1.175

Figure 5-31: Who	owns the vehicles	that young	drivers operate?
------------------	-------------------	------------	------------------

Number of strata =	24	Numbe	er of obs =	978
Number of PSUs =	978	Popul	ation size =	= 224283.38
		Desig	yn df =	954
Who owns the vehicle		classif	ication	
you drive?	BDE w/ TD	BDE w/o TD	non-BDE	Total
you	11.86	6.637	7.772	9.313
	[9.018,15.44]	[3.889,11.1]	[5.289,11.28]	[7.524,11.48]
your parents/guardian	86.26	88	84.32	86.41
	[82.46,89.34]	[81.91,92.24]	[78.78,88.62]	[83.69,88.73]
other family member	1.208	3.701	4.772	2.766
-	[.5081,2.844]	[1.458,9.079]	[2.597,8.609]	[1.698,4.476]
friend	0	1.347	2.745	1.016
		[.2965,5.9]	[.9568,7.62]	[.4216,2.429]
other	.677	.3102	.3912	.4985
	[.1659,2.719]	[.07959,1.201	[.09144,1.657	[.1907,1.297]
Total	100	100	100	100
Key: column percents	ages			
[95% confidence	e intervals for	column percenta	iges]	
Pearson:				
Uncorrected chi2	(8) =	25.9935		
Design-based F(6.	52, 6217.87)=	2.4293 P =	0.0203	

Figure 5-32: Logistic regression

Number of stra	ata =	24		Number of	obs =	978
Number of PSUs	3 =	978		Populatic	on size =	224283.38
				Design df	-	954
				F(7,	948) =	10.15
				Prob > F	=	0.0000
		Linearized				
driver_owns	Odds Ratio	Std. Err.	t	₽> t	[95% Conf.	Interval]
classifica~n						
BDE w/ TD	1.000	(base)				
BDE w/o TD	0.524	0.184	-1.839	0.066	0.263	1.044
non-BDE	0.851	0.253	-0.543	0.588	0.474	1.526
gender						
male	1.000	(base)				
female	0.610	0.160	-1.884	0.060	0.365	1.021
ageyears						
16	1.000	(base)				
17	8.050	4.093	4.103	0.000	2.968	21.832
18	8.494	4.330	4.197	0.000	3.124	23.099
19	12.895	6.443	5.117	0.000	4.837	34.378
num_postal~e						
Rural	1.000	(base)				
Urban	0.218	0.054	-6.117	0.000	0.134	0.355
_cons	0.057	0.030	-5.390	0.000	0.020	0.162

i igule J-JJ. Who has uninnited use of a motor venicle	Figure	5-33:	Who	has	unlimited	use	of a	motor	vehicle
--	--------	-------	-----	-----	-----------	-----	------	-------	---------

Number of strata =	24	Number of obs	=	9
Number of PSUs =	978	Population size	= 224	283.3
		Design df	=	95
	I			
	Do you have	unlimited use of vehi	cle?	
Vehicle Ownership	No	Yes	Total	
Someone Else Owns Vehicle	57.73	42.27	100	
	[53.64,61.71]	[38.29,46.36]		
Owns Vehicle	6.808	93.19	100	
	[2.912,15.11]	[84.89,97.09]		
Total	52.99	47.01	100	
	[49.15,56.79]	[43.21,50.85]		
Key: row percentages				
[95% confidence in	tervals for row	percentages]		
Pearson:				
Uncorrected chi2(1)	= 85.9	747		
Design-based F(1, 954) = 71.8	325 P = 0.0000		
	, , , , , , , , , , , , , , , , , , , ,			

Figure 5-34: What type of vehicles do young drivers operate?

Number of strata	=	24			Numk	ber o	f obs	s =		978
Number of PSUs	=	978			Ρορι	lati	on s	ize =	22428	3.38
					Desi	.gn d	lf	=		954
What type of										
vehicle do you										
drive most										
often?	perce	ntages		lb		ub				
other (please s		1.171		.5537	2	2.46				
car		56.64		52.78	60	0.42				
minivan/family		15.38		12.77	18	3.41				
sport utility v		19.61		16.72	22	2.86				
pick-up truck		7.11		5.505	9.	137				
motorcycle		.09358		.02248	.3	8887				
Total		100								
Key: percentag	jes =	cell p	erce	entages						
lb	=	lower	95%	confidence	bounds	for	cell	percenta	ages	
ub	=	upper	95%	confidence	bounds	for	cell	percenta	ages	

Figure 5-35: How many vehicles do young drivers have access to driv	/enicles do young drivers have access to drive?
---	---

Number of strata =	24	Num	= 978		
Number of PSUs =	978	Pop	= 224283.38		
		Des	ign df	= 954	
How many vehicles					
do you have access		classif	ication		
to drive?	BDE w/ T	BDE w/o	non-BDE	Total	
do not have access	1.303	3.882	2.954	2.482	
	[.4997,3.355]	[1.566,9.302]	[1.165,7.291]	[1.416,4.316]	
1	25.56	27	35.39	28.11	
	[21.26,30.4]	[20.48,34.68]	[28.79,42.59]	[24.78,31.7]	
2	47.37	47.4	44.99	46.87	
	[42.26,52.53]	[39.5,55.44]	[37.91,52.28]	[43.05,50.73]	
3	20.66	18.01	11.86	17.94	
	[16.9,25.02]	[12.67,24.95]	[7.795,17.65]	[15.21,21.05]	
4+	5.103	3.708	4.802	4.591	
	[3.336,7.732]	[1.873,7.211]	[2.487,9.073]	[3.344,6.274]	
Total	100	100	100	100	
Key: column perce	ntages				
[95% confide	nce intervals fo	or column percen	tages]		
Pearson:					
Uncorrected ch	i2(8) =	17.5063			
Design-based F(7.65, 7296.32)=	1.4627 P	= 0.1688		

Figure 5-36: Logistic regression

Number of str	ata =	24		Number o	f obs	= 978
Number of PSU	s =	978		Populati	on size	= 224283.38
				Design d	f	= 954
				F(6,	949)	= 1.87
				Prob > F		= 0.0836
		Linearized				
number_veh~1	Odds Ratio	Std. Err.	t	₽> t	[95% Con:	f. Interval]
classifica~n						
BDE w/ TD	1.000	(base)				
BDE w/o TD	0.839	0.190	-0.776	0.438	0.539	1.307
non-BDE	0.586	0.128	-2.458	0.014	0.382	0.898
gender						
male	1.000	(base)				
female	0.778	0.144	-1.355	0.176	0.541	1.119
ageyears						
16	1.000	(base)				
17	1.053	0.283	0.192	0.848	0.621	1.785
18	1.058	0.293	0.202	0.840	0.614	1.822
19	0.785	0.232	-0.818	0.414	0.439	1.403
_cons	0.402	0.107	-3.436	0.001	0.239	0.676

Figure 5-37: Who served most often as the supervising driver during G1 stage?

Number of strata = 24	Nun	ber of obs	=	983
Number of PSUs = 983	Por	ulation si	ze = 22527	5.27
	Des	sign df	=	959
Who is/was the supervising				
driver most often during G1?	percentages	lb	ub	
	Ferencages			
other (please specify)	.9351	.4074	2.131	
mother	38.85	35.22	42.6	
father	44.76	40.96	48.62	
older sibling	.997	.4587	2.153	
other relative	1.683	.8887	3.166	
friend	.9604	.3862	2.368	
driving instructor	9.568	7.463	12.19	
drove alone	.4368	.1462	1.298	
did not drive during this period	1.814	.9831	3.324	
Total	100			
Key: percentages = cell perce	entages			
1b = 10wer 95%	confidence bounds	for cell	percentages	
ub = upper 95%	confidence bounds	for cell	percentages	

Figure 5-38: On average, how many hours of supervision do young drivers get per month during the G1 licence stage?

Number of strata	= 24		Number of obs	= 97
Number of PSUs	= 970		Population size	= 220885.5
			Design df	= 94
# supervised				
hours monthly.		classif	ication	
G1	BDE w/ T	BDE w/o	non-BDE	Total
0-10 hours	35.15	42.58	51.96	41.01
	[30.34,40.28]	[34.81,50.73]	[45.08,58.77]	[37.3,44.83]
11-20 hours	34.67	34.88	24.3	32.59
	[29.9,39.77]	[27.58,42.96]	[18.76,30.84]	[29.07,36.32]
21-30 hours	16.04	11.34	8.566	12.98
	[12.58,20.22]	[7.036,17.77]	[5.35,13.44]	[10.6,15.82]
31-40 hours	7.654	5.823	5.64	6.65
	[5.392,10.76]	[2.858,11.5]	[3.611,8.706]	[4.999,8.795]
41-50 hours	4.567	2.059	4.91	3.833
	[2.883,7.164]	[.7131,5.797]	[2.591,9.11]	[2.68,5.456]
51+ hours	1.918	3.321	4.625	2,928
	[1.033,3.532]	[1.398,7.683]	[2.491,8.429]	[1.927,4.425]
Total	100	100	100	100
Key: column pe [95% conf	ercentages Eidence interval	s for column pe	ercentages]	
Pearson:				
Uncorrected	chi2(10)	= 31.0543		
Design-based	F(9.08, 8591.4	13)= 2.1941	P = 0.0193	

Figure 5-39: Logistic regression

Number of stra	ata =	24		Number of	obs	= 970
Number of PSUs	3 =	970		Population	n size	= 220885.52
				Design df		= 946
				F(6,	941)	= 5.18
				Prob > F		= 0.0000
		Linearized				
supervisio~1	Odds Ratio	Std. Err.	t	P> t	[95% Conf	. Interval]
classifica~n						
BDE w/ TD	1.000	(base)				
BDE w/o TD	0.737	0.149	-1.513	0.131	0.496	1.095
non-BDE	0.648	0.116	-2.415	0.016	0.456	0.922
_						
gender						
male	1.000	(base)				
female	0.747	0.125	-1.748	0.081	0.538	1.036
ageyears						
16	1.000	(base)				
17	2.343	0.528	3.780	0.000	1.506	3.646
18	2.529	0.596	3.935	0.000	1.592	4.017
19	2.109	0.495	3.182	0.002	1.331	3.342
_cons	0.973	0.222	-0.121	0.904	0.621	1.523
19 _cons	2.109 0.973	0.495	3.182	0.002	1.331 0.621	3.342

Figure 5-40: Do young drivers get additional supervised driving practice once they obtain a G2 licence?

Number of strata	= 20	Number	of obs =	868
Number of PSUs	= 868	Populat	ion size = 2	02209.08
		Design	df =	848
Did the driver				
get supervision				
during G2?	percentages	lb ub		
	/5.21	41.36 49.31		
yes	54 69	50 69 58 64		
110	51.05	30.09 30.01		
Total	100			
		· · · · · · · · · · · · · · · · · · ·		
Key: percentag	ges = cell pe	rcentages		
lb	= lower 9	5% confidence bounds for	cell percentag	es
ub	= upper 9	5% confidence bounds for	cell percentag	es
1				

Figure 5-41: In the average month, how often do young G1 drivers operate a vehicle unsupervised?

Number of strata	= 24		Number of obs	= 970
Number of PSUs	= 970		Population siz	e = 220885.52
			Design df	= 946
How often				
do/did you	1			
drive without	1	classif	ication	
auporvigor?	ייי שתם / ייי	PDF w/o	non-PDF	Total
supervisor?	BDE W/ I	BDE W/O	HOH-BDE	IOLAI
never/rarely	74.41	79.61	79.66	77.16
	[69.61,78.69]	[72.13,85.48]	[73.04,84.99]	[73.73,80.27]
once per month	4.797	4.811	2.917	4.413
	[2.938,7.739]	[2.227,10.08]	[1.098,7.519]	[2.987,6.474]
once per week	7 769	7 143	7 348	7 481
once per week	1.705	[3 885 12 77]	[4 281 12 33]	[5 677 9 799]
	[5.449,10.90]	[5.005,12.77]	[4.201,12.55]	[3.077,5.755]
several times p	9.437	7.095	5.312	7.832
	[6.73,13.08]	[3.979,12.34]	[3.046,9.106]	[6.006,10.15]
almost every da	3.585	1.344	4.762	3.11
	[2.083,6.105]	[.2963,5.881]	[2.399,9.229]	[2.041,4.711]
Total	100	100	100	100
10041	100	100	100	100
Key: column pe	rcentages			
[95% conf	idence interval	s for column pe	rcentages]	
2				
rearson:	1	10 0014		
uncorrected	Cn12(8)	= 10.8014		
Design-based	F(7.44, 7036.1	L)= 0.8396	P = 0.5602	

Figure 5-42: Logistic regression

Number of stra	ata =	24		Number o	f obs :	= 962
Number of PSUs	s =	962		Populati	on size :	= 219152.37
				Design d	£ ÷	= 938
				F(5,	934) =	= 3.98
				Prob > F	:	= 0.0014
		Linearized				
unsupervis~y	Odds Ratio	Std. Err.	t	P> t	[95% Conf	. Interval]
never_high~1	2.233	0.478	3.754	0.000	1.467	3.399
gender						
male	1.000	(base)				
female	1.106	0.213	0.524	0.600	0.759	1.613
ageyears						
16	1.000	(base)				
17	0.671	0.202	-1.327	0.185	0.372	1.210
18	1.284	0.383	0.837	0.403	0.715	2.305
19	0.982	0.300	-0.060	0.952	0.538	1.790
cons	0.226	0.057	-5.856	0.000	0.137	0.372
	0.220	5.057	2.000			015/2

Figure 5-43: Do parents/guardians restrict the hours that G1 drivers have access to a vehicle?

Number of strata	= 4		Number of obs	= 114
Number of PSUs	= 114		Population size	= 22763.161
			Design df	= 110
	Do your parents	/guardians rest	rict the hours	
	acc	ess to a vehicl	e?	
classification	No	Yes	Total	
BDE w/o TD	60.47	39.53	100	
	[44.08,74.79]	[25.21,55.92]		
non-BDE	46.18	53.82	100	
	[32.88,60.05]	[39.95,67.12]		
Total	48.39	51.61	100	
	[36.67,60.28]	[39.72,63.33]		
Key: row perce	entages			
[95% con:	fidence interval	s for row perce	ntages]	
Pearson:				
Uncorrected	chi2(1)	= 1.2174		
Design-based	F(1, 110)	= 1.7714	P = 0.1860	

Figure 5-44: Do parents/guardians restrict the hours that G2 drivers have access to a vehicle?

Number of strata	= 20		Number of obs	= 850
Number of PSUs	= 850		Population size	= 198652.54
			Design df	= 830
	r			
	Do your parents	/guardians rest	rict the hours	
classification	No	Yes	Total	
BDE w/ TD	61.43	38.57	100	
	[56.34,66.28]	[33.72,43.66]		
BDE w/o TD	62.38	37.62	100	
	[53.88,70.18]	[29.82,46.12]		
non-BDE	60.61	39.39	100	
	[52.56,68.12]	[31.88,47.44]		
Total	61.64	38.36	100	
	[57.6,65.53]	[34.47,42.4]		
Key: row perce	entages			
[95% con:	fidence interval	s for row perce.	entages]	
Pearson:				
Uncorrected	chi2(2)	= 0.1293		
Design-based	F(1.77, 1473.1	.2)= 0.0480	P = 0.9378	

Figure 5-45: Do G1 drivers have a curfew set by their parents/guardians when they are driving?

Number of strata	= 4		Number of obs	= 113
Number of PSUs	= 113		Population size	= 22651.446
			Design df	= 109
	Do your pare	ents/guardians s	et a curfew?	
classification	No	Yes	Total	
			· · · · · · · · · · · · · · · · · · ·	
BDE w/o TD	52.61	47.39	100	
	[36.29,68.39]	[31.61,63.71]		
non-BDE	48.31	51.69	100	
	[34.8,62.07]	[37.93,65.2]		
Total	48.96	51.04	100	
	[37.11,60.92]	[39.08,62.89]		
Key: row perce	entages			
[95% conf	idence interval	s for row perce	ntages]	
Pearson:				
Uncorrected	chi2(1)	= 0.1070		
Design-based	F(1, 109)	= 0.1538	P = 0.6957	

Figure 5-46: Do G2 drivers have a curfew set by their parents/guardians when they are driving?

Number of strata	= 20		Number of obs	= 848
Number of PSUs	= 848		Population size	= 198251.63
			Design df	= 828
	Do your pare	ents/guardians s	set a curfew?	
classification	No	Yes	Total	
BDE w/ TD	53.76	46.24	100	
	[48.62,58.82]	[41.18,51.38]		
BDE w/o TD	55.86	44.14	100	
	[47.29,64.09]	[35.91,52.71]		
non-BDE	57.55	42.45	100	
	[49.45,65.26]	[34.74,50.55]		
Total	55.01	44.99	100	
	[50.89,59.05]	[40.95,49.11]		
Key: row perce	entages			
[95% conf	idence interval	s for row perce	entages]	
Pearson:				
Uncorrected	chi2(2)	= 0.6717		
Design-based	F(1.77, 1469.6	0.2477	P = 0.7540	

Figure 5-47: How many teen drivers do parents/guardians allow in the vehicle with young drivers during G1 licence stage?

Number of strata	= 24		Number of obs	= 959
Number of PSUs	= 959		Population size	e = 220441.20
			Design df	= 935
			-	
How many teens				
do vour parents				
allow you to		classif	ication	
have during G1?	BDE w/ T	BDE w/o	non-BDE	Total
0	26.6	31.17	25.59	27.87
0	[22,23,31,49]	[24.03.39.33]	[19.88.32.28]	[24.46.31.55]
	[22:23,31:13]	[21105/55155]	[19:00/02:20]	[21110/01100]
1	16.22	20.1	15.18	17.26
	[12.83,20.29]	[14.38,27.37]	[10.78,20.95]	[14.52,20.38]
2	8.374	6.136	5.435	7.03
	[6.046,11.49]	[3.274,11.21]	[3.253,8.944]	[5.393,9.118]
3	4.553	4.057	3.88	4.251
	[2.76,7.422]	[1.747,9.138]	[1.734,8.455]	[2.875,6.241]
4+	1.657	1.057	2.193	1.576
	[.7529,3.609]	[.3641,3.028]	[.8288,5.673]	[.9257,2.67]
don't know / ne	40.18	31.56	36	36.51
	[35.16,45.41]	[24.7,39.34]	[29.21,43.4]	[32.9,40.28]
	0 415	5 010	11 50	F F1
nave not driven	2.41/	5.919	11.72	5.51
	[1.214,4./53]	[3.092,11.03]	[/.386,18.1]	[3.946,7.644]
Total	100	100	100	100
IUCAL	100	100	100	100
Kev: column pe	ercentages			
[95% conf	idence interval	s for column pe	rcentagesl	
Pearson:				
Uncorrected	chi2(12)	= 33.2692		
Design-based	F(11.19, 10465	.85)= 1.9402	P = 0.0292	

Figure 5-48: How many teen drivers do parents/guardians allow in the vehicle with young drivers during G2 licence stage?

Number of strata	= 20		Number of obs	= 84
Number of PSUs	= 846		Population siz	e = 197789.8
			Design df	= 82
	r			
How many teens				
do your parents				
allow you to		classif	ication	
have during G2?	BDE w/ T	BDE w/o	non-BDE	Total
0	2.195	1.996	5.515	2.583
	[1.056,4.509]	[.6344,6.099]	[2.774,10.67]	[1.589,4.172]
1	7.1	11.86	9.415	9.054
	[4.88,10.22]	[7.297,18.7]	[5.546,15.54]	[6.882,11.82]
2	9.887	9.769	12.66	10.23
	[7.289,13.28]	[5.863,15.84]	[8.245,18.95]	[8.073,12.88]
3	11.9	11.15	7.254	11
	[9.013,15.56]	[6.889,17.54]	[4.403,11.72]	[8.73,13.78]
4+	31.2	20 52	22 82	26 38
1.	[26.56,36.24]	[14.46,28.28]	[16.77,30.25]	[22.95,30.11]
donit know (no	27 20	44 71	41.26	40.44
JOH C KHOW / HE	[32.49,42.53]	[36.39,53.33]	[33.58,49.61]	[36.43,44.59]
and not driven	2424	0	0764	21.24
lave not driven	[.0617,1.886]	0	[.1357,6.679]	[.0858,1.131]
Totol	100	100	100	100
IUCAI	100	100	100	100
Kev: column pe	ercentages			
[95% conf	fidence interval	s for column pe	ercentages]	
Pearson:				
Uncorrected	chi2(12)	= 24.6233		
Design-based	F(10 75 8878	17) = 15885	P = 0.0969	

The knowledge source for safe driving

Figure 5-49: How often do parents/guardians talk to young drivers about traffic safety and rules of the road?

Number of strata	= 24		Number of obs	= 959
Number of PSUs	= 959		Population size	= 220441.26
			Design df	= 935
	How many ti	mes have your p	arents talked to	you about
		traffic safet	y and rules?	
classification	never	once or	several	Total
BDE w/ TD	3.954	29.18	66.87	100
	[2.271,6.797]	[24.69,34.12]	[61.84,71.54]	
BDE w/o TD	6.061	26.95	66.99	100
	[3.161,11.31]	[20.28,34.86]	[58.82,74.24]	
non-BDE	3.869	12.37	83.76	100
	[1.776,8.224]	[8.498,17.66]	[77.8,88.36]	
Total	4.618	24.92	70.46	100
	[3.166,6.691]	[21.7,28.44]	[66.79,73.89]	
Key: row perce	ntages			
[95% conf	fidence interval	s for row perce	entages]	
Pearson:				
Uncorrected	chi2(4)	= 25.0303		
Design-based	F(3.80, 3550.2	6)= 4.1594	P = 0.0028	

Figure 5-50: Logistic regression

Number of stra	ata =	24		Number of	obs =	959
Number of PSU:	s =	959		Populatio	n size =	220441.26
				Design df	=	935
				F(б,	930) =	4.10
				Prob > F	=	0.0005
		Linearized				
rules_conv~1	Odds Ratio	Std. Err.	t	P> t	[95% Conf.	Interval]
classifica~n						
BDE w/ TD	0.394	0.087	-4.226	0.000	0.256	0.607
BDE w/o TD	0.416	0.107	-3.404	0.001	0.251	0.690
non-BDE	1.000	(base)				
gender						
male	1.000	(base)				
female	1.039	0.186	0.212	0.832	0.730	1.477
ageyears						
16	1.000	(base)				
17	1.169	0.304	0.600	0.549	0.702	1.946
18	0.630	0.164	-1.778	0.076	0.378	1.049
19	0.963	0.260	-0.139	0.890	0.567	1.637
_cons	5.656	1.613	6.076	0.000	3.232	9.898

Figure 5-51: Do parents/guardians talk to young drivers about drinking and driving?

Number of strata	= 24		Number of obs	= 959
Number of PSUs	= 959		Population size	= 220441.26
			Design df	= 935
	Have your pare	nts ever talked	to you about	
	dri	nking and drivi	ng?	
classification	yes	no	Total	
	85 49	14 51	100	
555 w/ 15	[81.31.88.87]	[11.13.18.69]	100	
BDE w/o TD	75.61	24.39	100	
	[68.01,81.88]	[18.12,31.99]		
non-BDE	80.91	19.09	100	
	[74.32,86.12]	[13.88,25.68]		
Total	81.33	18.67	100	
	[78.02,84.24]	[15.76,21.98]		
Key: row perce	entages	-		
[95% conf	idence interval	s for row perce.	ntages]	
Doorgon				
Pear Soll.	abi2(2)	- 11 0000		
Design-based		- 11.0222	D = 0.0210	
Design-based	т(т.ээ, то08./	0,- 3.9200	F - 0.0210	

Figure 5-52: Do parents/guardians talk to young drivers about texting and driving?

Number of strata	= 24		Number of obs	= 959
Number of PSUs	= 959		Population size	= 220441.20
			Design df	= 935
	Have your pare	ents ever talked	to you about	
	tex	ting and drivin	g?	
classification	yes	no	Total	
BDE w/ TD	86.98	13.02	100	
	[82.99,90.15]	[9.855,17.01]		
BDE w/o TD	76.6	23.4	100	
	[69.17,82.69]	[17.31,30.83]		
non-BDE	82.22	17.78	100	
	[75.56,87.37]	[12.63,24.44]		
Total	82.62	17.38	100	
	[79.39,85.43]	[14.57,20.61]		
Key: row perce	ntages			
[95% conf	idence interval	s for row perce	ntages]	
Deemaant				
Uncorrected	abi2(2)	- 13 7699		
Degign baged	EIIIZ(Z)	- 13.7009	D = 0.0100	
Design-based	F(1.95, 1025.3	2/- 4.5645	P = 0.0109	

Figure 5-53: Do parents/guardians talk to young drivers about distracted driving other than texting and driving?

Number of strata	= 24		Number of obs	= 959
Number of PSUs	= 959		Population size	= 220441.26
			Design df	= 935
	Have your pare	ents ever talked	to you about	
	di	stracted drivin	g?	
classification	yes	no	Total	
BDE w/ TD	85.14	14.86	100	
	[80.96,88.53]	[11.47,19.04]		
BDE w/o TD	80.23	19.77	100	
	[73.25,85.74]	[14.26,26.75]		
non-BDE	85.23	14.77	100	
	[79.12,89.79]	[10.21,20.88]		
Total	83.57	16.43	100	
	[80.46,86.27]	[13.73,19.54]		
Key: row perce	entages			
[95% conf	idence interval	s for row perce	ntages]	
Pearson:				
Uncorrected	chi2(2)	= 3.7373		
Design-based	F(1.94, 1816.0	3)= 1.2804	P = 0.2778	

130 The knowledge source for safe driving

Figure 5-54: Logistic regression

(running logi	unkdrive_conv t on estimati	ersation : 0 on sample)	=No 1=Yes	5		
Survey: Logis	tic regressio	n				
Number of stra	ata =	24		Number of	obs =	959
Number of PSU	3 =	959		Populatio	n size =	220441.26
				Design df	=	935
				F(6,	930) =	1.91
				Prob > F	=	0.0769
. <u></u>						
drunkdrive~n	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	Intervall
					-	
classifica~n						
BDE w/ TD	1.000	(base)				
BDE w/o TD	0.547	0.133	-2.488	0.013	0.340	0.880
non-BDE	0.742	0.181	-1.222	0.222	0.460	1.198
gender						
male	1.000	(base)				
female	1.443	0.304	1.740	0.082	0.954	2.182
ageyears						
16	1.000	(base)				
17	1.050	0.324	0.158	0.874	0.573	1.923
18	1.045	0.337	0.136	0.892	0.554	1.969
19	0.796	0.250	-0.728	0.467	0.430	1.473
_cons	5.009	1.520	5.308	0.000	2.761	9.088
(running logi	t on estimati	on sample)				· · · · · · · · · · · · · · · · · · ·
Survey: Logis	tic regressio	n				
Number of str	ata =	24		Number of	obs =	959
Number of PSU	= =	959		Populatio	nsize =	220441 26
Number of 190	5 –	555		Degign df	-	025
				E C C		1 01
				Prob > F	=	0.0769
		Linearized				
drunkdrive~n	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
drunkdrive~n 	Odds Ratio	Linearized Std. Err.	t	₽> t	[95% Conf.	Interval]
drunkdrive~n classifica~n BDE w/ TD	Odds Ratio	Linearized Std. Err. 0.443	t 2.488	P> t 0.013	[95% Conf. 1.136	Interval]
drunkdrive~n classifica~n BDE w/ TD BDE w/o TD	Odds Ratio 1.828 1.000	Linearized Std. Err. 0.443 (base)	t 2.488	P> t 0.013	[95% Conf. 1.136	Interval]
drunkdrive~n classifica~n BDE w/ TD BDE w/o TD non-BDE	Odds Ratio 1.828 1.000 1.356	Linearized Std. Err. 0.443 (base) 0.365	t 2.488 1.132	<pre>P> t 0.013 0.258</pre>	[95% Conf. 1.136 0.800	Interval] 2.942 2.301
drunkdrive~n classifica~n BDE w/ TD BDE w/o TD non-BDE gender	Odds Ratio 1.828 1.000 1.356	Linearized Std. Err. 0.443 (base) 0.365	t 2.488 1.132	<pre>P> t 0.013 0.258</pre>	[95% Conf. 1.136 0.800	Interval] 2.942 2.301
drunkdrive~n classifica~n BDE w/ TD BDE w/o TD non-BDE gender male	Odds Ratio 1.828 1.000 1.356 1.000	Linearized Std. Err. 0.443 (base) 0.365 (base)	t 2.488 1.132	<pre>P> t 0.013 0.258</pre>	[95% Conf. 1.136 0.800	Interval] 2.942 2.301
drunkdrive~n classifica~n BDE w/ TD BDE w/o TD non-BDE gender male female	Odds Ratio 1.828 1.000 1.356 1.000 1.443	Linearized Std. Err. 0.443 (base) 0.365 (base) 0.304	t 2.488 1.132 1.740	<pre>P> t 0.013 0.258 0.082</pre>	[95% Conf. 1.136 0.800 0.954	Interval] 2.942 2.301 2.182
drunkdrive~n classifica~n BDE w/ TD BDE w/o TD non-BDE gender male female agevears	Odds Ratio 1.828 1.000 1.356 1.000 1.443	Linearized Std. Err. 0.443 (base) 0.365 (base) 0.304	t 2.488 1.132 1.740	<pre>P> t 0.013 0.258 0.082</pre>	[95% Conf. 1.136 0.800 0.954	Interval] 2.942 2.301 2.182
drunkdrive~n classifica~n BDE w/ TD BDE w/o TD non-BDE gender male female ageyears 16	Odds Ratio 1.828 1.000 1.356 1.000 1.443 1.000	Linearized Std. Err. 0.443 (base) 0.365 (base) 0.304 (base)	t 2.488 1.132 1.740	<pre>P> t 0.013 0.258 0.082</pre>	[95% Conf. 1.136 0.800 0.954	Interval] 2.942 2.301 2.182
drunkdrive~n classifica~n BDE w/ TD BDE w/o TD non-BDE gender male female ageyears 16 17	Odds Ratio 1.828 1.000 1.356 1.000 1.443 1.000 1.050	Linearized Std. Err. 0.443 (base) 0.365 (base) 0.304 (base) 0.324	t 2.488 1.132 1.740 0.158	<pre>P> t 0.013 0.258 0.082 0.874</pre>	[95% Conf. 1.136 0.800 0.954 0.573	Interval] 2.942 2.301 2.182 1.923
drunkdrive~n classifica~n BDE w/ TD BDE w/0 TD non-BDE gender male female ageyears 16 17 18	Odds Ratio 1.828 1.000 1.356 1.000 1.443 1.000 1.050 1.045	Linearized Std. Err. 0.443 (base) 0.365 (base) 0.304 (base) 0.324 0.337	t 2.488 1.132 1.740 0.158 0.136	<pre>P> t 0.013 0.258 0.082 0.874 0.892</pre>	[95% Conf. 1.136 0.800 0.954 0.573 0.574	Interval] 2.942 2.301 2.182 1.923 1.969
drunkdrive~n classifica~n BDE w/ TD BDE w/o TD non-BDE gender male female ageyears 16 17 18 19	Odds Ratio 1.828 1.000 1.356 1.000 1.443 1.000 1.050 1.055 0.796	Linearized Std. Err. 0.443 (base) 0.365 (base) 0.304 (base) 0.324 0.337 0.250	t 2.488 1.132 1.740 0.158 0.136 -0.728	<pre>P> t 0.013 0.258 0.082 0.874 0.892 0.467</pre>	[95% Conf. 1.136 0.800 0.954 0.573 0.554 0.430	Interval] 2.942 2.301 2.182 1.923 1.969 1.473
drunkdrive~n classifica~n BDE w/ TD BDE w/o TD non-BDE gender male female ageyears 16 17 18 19	Odds Ratio 1.828 1.000 1.356 1.000 1.443 1.000 1.050 1.045 0.796	Linearized Std. Err. 0.443 (base) 0.365 (base) 0.304 (base) 0.324 0.337 0.250	t 2.488 1.132 1.740 0.158 0.136 -0.728	<pre>P> t 0.013 0.258 0.082 0.874 0.892 0.467</pre>	[95% Conf. 1.136 0.800 0.954 0.573 0.554 0.430	Interval] 2.942 2.301 2.182 1.923 1.969 1.473

Figure 5-55: Logistic regression

(running logit	text_convers on estimati	ation : 0=No on sample)	1=Yes			
Survey: Logist	cic regressio	n				
Number of stra Number of PSUs	ata = s =	24 959		Number of Populatio Design df F(6, Prob > F	obs = n size = 930) =	959 220441.26 935 2.14 0.0468
text_conve~n	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
classifica~n BDE w/ TD	1.000	(base)				
BDE w/o TD non-BDE	0.516 0.792	0.127 0.201	-2.688 -0.920	0.007 0.358	0.319 0.482	0.837 1.302
gender male female	1.000 1.460	(base) 0.323	1.709	0.088	0.945	2.254
ageyears 16 17 18	1.000 1.367 1.455	(base) 0.420 0.481	1.018	0.309 0.257	0.748 0.761	2.500 2.784
19	0.931	0.286	-0.232	0.817	0.509	1.702
_cons	4.442	1.341	4.940	0.000	2.457	8.032
(running logit Survey: Logist	: on estimati tic regressio	on sample) n				
Number of stra Number of PSU:	ata = 5 =	24 959		Number of Populatio Design df F(6, Prob > F	obs = n size = 930) =	959 220441.26 935 2.14 0.0468
text_conve~n	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
classifica~n BDE w/ TD BDE w/o TD	1.936 1.000	0.476 (base)	2.688	0.007	1.195	3.137
non-BDE gender	1.534	0.424	1.548	0.122	0.892	2.639
male female	1.000 1.460	(base) 0.323	1.709	0.088	0.945	2.254
ageyears 16 17	1.000	(base) 0.420	1.018	0.309	0.748	2.500
18 19	1.455 0.931	0.481	1.135 -0.232	0.257 0.817	0.761 0.509	2.784 1.702
_cons	2.294	0.725	2.628	0.009	1.234	4.265

Figure 5-56: Logistic regression

did	stractron_con	versacion .	0-110 1-10	- 5		
(running logit	on estimati	on sample)				
(======================================						
Survey: Logist	cic regressio	n				
Number of stra	ata =	24		Number of	obs =	= 959
Number of PSUs	5 =	959		Populatic	on size =	= 220441.26
				Design df	: =	= 935
				F(6,	930) =	= 1.49
				Prob > F	=	0.1800
		Linearized				
distractio~n	Odds Ratio	Std. Err.	t	P> t	[95% Conf.	[Interval]
						· · · · · · · · · · · · · · · · · · ·
classifica~n						
BDE w/ TD	1.000	(base)				
BDE w/o TD	0.792	0.197	-0.938	0.349	0.486	1.291
non-BDE	1.135	0.297	0.485	0.628	0.679	1.897
gender						
male	1.000	(base)				
female	1.434	0.318	1.626	0.104	0.928	2.217
200020	11101	01010	11020	01201	01920	5.517
ageyears						
16	1.000	(base)				
17	1.463	0.474	1.173	0.241	0.774	2.765
18	1.091	0.354	0.268	0.789	0.577	2.061
T0				0.000		1 411
19	0.756	0.240	-0.881	0.379	0.405	1.411
19	0.756	0.240	-0.881	0.379	0.405	1.411
19 _cons	0.756 4.370	0.240	-0.881 4.863	0.379	0.405	7.923
19 cons (running logit	0.756 4.370	0.240 1.325 .on sample)	-0.881 4.863	0.000	0.405	7.923
19 cons (running logit	0.756 4.370	0.240 1.325 on sample)	-0.881 4.863	0.379	0.405	7.923
19 cons (running logit Survey: Logist	0.756 4.370 on estimati	0.240 1.325 on sample)	-0.881 4.863	0.000	0.405	7.923
19 cons (running logit Survey: Logist	0.756 4.370 on estimati tic regressio	0.240 1.325 on sample) on	-0.881 4.863	0.379 0.000	0.405 2.410	1.411 7.923
19 cons (running logit Survey: Logist Number of stra Number of PSII	0.756 4.370 t on estimati tic regressio ata =	0.240 1.325 on sample) on 24 959	-0.881 4.863	0.379 0.000 Number of	0.405 2.410	
19 cons (running logit Survey: Logist Number of stra Number of PSUs	0.756 4.370 t on estimati tic regressio ata = s =	0.240 1.325 .on sample) .n 24 959	-0.881 4.863	0.379 0.000 Number of Populatic Design df	0.405 2.410	
19 cons (running logit Survey: Logist Number of stra Number of PSUs	0.756 4.370 t on estimati tic regressio ata = s =	0.240 1.325 on sample) on 24 959	-0.881 4.863	0.379 0.000 Number of Populatic Design df	0.405 2.410	1.411 7.923 = 959 = 220441.26 = 935 = 1.49
19 cons (running logit Survey: Logist Number of stra Number of PSUs	0.756 4.370 t on estimati tic regressio ata = s =	0.240 1.325 .on sample) .n 24 959	-0.881 4.863	Number of Populatic Design df F(6, Prob > F	0.405 2.410 5 obs = 5 obs = 930) =	1.411 7.923 = 959 = 220441.26 = 935 = 1.49 = 0.1800
19 cons (running logit Survey: Logist Number of stra Number of PSUs	0.756 4.370 t on estimati tic regressio ata = s =	0.240 1.325 on sample) on 24 959	-0.881 4.863	0.379 0.000 Number of Populatic Design df F(6, Prob > F	0.405 2.410 5 obs = 5 on size = 930) =	1.411 7.923 = 959 = 220441.26 = 935 = 1.49 = 0.1800
19 cons (running logit Survey: Logist Number of stra Number of PSUs	0.756 4.370 t on estimati tic regressio ata = s =	0.240 1.325 on sample) on 24 959	-0.881 4.863	0.379 0.000 Number of Populatic Design df F(6, Prob > F	0.405 2.410 E obs = on size = 930) =	- 959 - 959 - 220441.26 - 935 - 1.49 - 0.1800
19 cons (running logit Survey: Logist Number of stra Number of PSUs	0.756 4.370 t on estimati tic regressio ata = s =	0.240 1.325 on sample) on 24 959 Linearized	-0.881 4.863	0.379 0.000 Number of Populatic Design df F(6, Prob > F	0.405 2.410 E obs = on size = 930) =	1.411 7.923 = 959 = 220441.26 = 935 = 1.49 = 0.1800
19 cons (running logit Survey: Logist Number of stra Number of PSUs distractio~n	0.756 4.370 c on estimati tic regressio ata = s = Odds Ratio	0.240 1.325 on sample) on 24 959 Linearized Std. Err.	-0.881 4.863	0.379 0.000 Number of Populatic Design df F(6, Prob > F P> t	0.405 2.410 5 obs = 5 on size = 930) = 930) = [95% Conf.	
lo l9 cons (running logit Survey: Logist Number of stra Number of PSUs distractio~n classifica~n	0.756 4.370 c on estimati tic regressio ata = s = Odds Ratio	0.240 1.325 on sample) m 24 959 Linearized Std. Err.	-0.881 4.863	0.379 0.000 Number of Populatic Design df F(6, Prob > F P> t	0.405 2.410 5 obs = 5 obs = 930) = 930) = [95% Conf.	1.411 7.923 = 959 = 220441.26 = 935 = 1.49 = 0.1800 . Interval]
lo 19 cons (running logit Survey: Logist Number of stra Number of PSUs distractio~n classifica~n BDE w/ TD	0.756 4.370 c on estimati tic regressio ata = s = Odds Ratio	0.240 1.325 on sample) on 24 959 Linearized Std. Err. 0.314	-0.881 4.863 t	0.379 0.000 Number of Populatic Design df F(6, Prob > F P> t 0.349	0.405 2.410 2.410 5 obs = 5 = 930) = 930) = [95% Conf. 0.775	1.411 7.923 = 959 = 220441.26 = 935 = 1.49 = 0.1800 - Interval] 2.059
lo l9 cons (running logit Survey: Logist Number of stra Number of PSUs distractio~n classifica~n BDE w/ TD BDE w/ TD	0.756 4.370 c on estimati tic regressio ata = s = Odds Ratio	0.240 1.325 on sample) on 24 959 Linearized Std. Err. 0.314 (base)	-0.881 4.863 t	0.379 0.000 Number of Populatic Design df F(6, Prob > F P> t 0.349	0.405 2.410 2.410 5 obs = 5 = 930) = 930) = [95% Conf. 0.775	1.411 7.923 = 959 = 220441.26 = 935 = 1.49 = 0.1800 = 0.1800
lo l9 cons (running logit Survey: Logist Number of stra Number of PSUs distractio~n classifica~n BDE w/ TD BDE w/ o TD non-BDE	0.756 4.370 t on estimati tic regressio ata = s = Odds Ratio 1.263 1.000 1.434	0.240 1.325 on sample) on 24 959 Linearized Std. Err. 0.314 (base) 0.422	-0.881 4.863 t 0.938 1.223	0.379 0.000 Number of Populatic Design df F(6, Prob > F P> t 0.349 0.222	0.405 2.410 2.410 5 obs = 5 = 930) = 930) = [95% Conf. 0.775 0.804	1.411 7.923 = 959 = 220441.26 = 935 = 1.49 = 0.1800 - Interval] 2.059 2.556
lo l9 cons (running logit Survey: Logist Number of stra Number of PSUs distractio~n classifica~n BDE w/ TD BDE w/o TD non-BDE	0.756 4.370 c on estimati tic regressio ata = s = Odds Ratio 1.263 1.000 1.434	0.240 1.325 on sample) on 24 959 Linearized Std. Err. 0.314 (base) 0.422	-0.881 4.863 t 0.938 1.223	0.379 0.000 Number of Populatic Design df F(6, Prob > F P> t 0.349 0.222	0.405 2.410 2.410 5 obs = 5 = 930) = 930) = [95% Conf. 0.775 0.804	1.411 7.923 220441.26 935 1.49 0.1800 Interval] 2.059 2.556
lo l9 cons (running logit Survey: Logist Number of stra Number of PSUs distractio~n classifica~n BDE w/ TD BDE w/o TD non-BDE gender	0.756 4.370 c on estimati tic regressio ata = s = Odds Ratio 1.263 1.000 1.434	0.240 1.325 on sample) on 24 959 Linearized Std. Err. 0.314 (base) 0.422	-0.881 4.863 t 0.938 1.223	0.379 0.000 Number of Populatic Design df F(6, Prob > F P> t 0.349 0.222	0.405 2.410 E obs = on size = 930) = [95% Conf. 0.775 0.804	1.411 7.923 = 959 = 220441.26 = 935 = 1.49 = 0.1800 . Interval] 2.059 2.556
lo l9 cons (running logit Survey: Logist Number of stra Number of PSUs distractio~n classifica~n BDE w/ TD BDE w/o TD non-BDE gender male	0.756 4.370 c on estimati tic regressio ata = s = Odds Ratio 1.263 1.000 1.434 1.000	0.240 1.325 on sample) on 24 959 Linearized Std. Err. 0.314 (base) 0.422 (base)	-0.881 4.863 t 0.938 1.223	0.379 0.000 Number of Populatic Design df F(6, Prob > F P> t 0.349 0.222	0.405 2.410 2.410 5 obs = 930) = 930) = [95% Conf. 0.775 0.804	1.411 7.923 = 959 = 220441.26 = 935 = 1.49 = 0.1800 . Interval] 2.059 2.556
lo l9 cons (running logit Survey: Logist Number of stra Number of PSUs distractio~n classifica~n BDE w/ TD BDE w/o TD non-BDE gender male female	0.756 4.370 c on estimati tic regressio ata = s = Odds Ratio 1.263 1.000 1.434 1.000 1.434	0.240 1.325 on sample) on 24 959 Linearized Std. Err. 0.314 (base) 0.422 (base) 0.318	-0.881 4.863 t 0.938 1.223 1.626	0.379 0.000 Number of Populatic Design df F(6, Prob > F P> t 0.349 0.222 0.104	0.405 2.410 2.410 5 obs = 930) = 930) = [95% Conf. 0.775 0.804 0.928	1.411 7.923 = 959 = 220441.26 = 935 = 1.49 = 0.1800 . Interval] 2.059 2.556 2.217
lo l9 cons (running logit Survey: Logist Number of stra Number of PSUs distractio~n classifica~n BDE w/ TD BDE w/ TD BDE w/o TD non-BDE gender male female	0.756 4.370 t on estimati tic regression ata = s = Odds Ratio 1.263 1.000 1.434 1.000 1.434	0.240 1.325 on sample) on 24 959 Linearized Std. Err. 0.314 (base) 0.422 (base) 0.318	-0.881 4.863 t 0.938 1.223 1.626	0.379 0.000 Number of Populatic Design df F(6, Prob > F P> t 0.349 0.222 0.104	0.405 2.410 2.410 5 obs = 930) = 930) = [95% Conf. 0.775 0.804 0.928	1.411 7.923 = 959 = 220441.26 = 935 = 1.49 = 0.1800 . Interval] 2.059 2.556 2.217
lo l9 cons (running logit Survey: Logist Number of stra Number of PSUs distractio~n classifica~n BDE w/ TD BDE w/ TD BDE w/o TD non-BDE gender male female ageyears	0.756 4.370 c on estimati tic regressio ata = s = 0dds Ratio 1.263 1.000 1.434 1.000 1.434	0.240 1.325 on sample) on 24 959 Linearized Std. Err. 0.314 (base) 0.422 (base) 0.318	-0.881 4.863 t 0.938 1.223 1.626	0.379 0.000 Number of Populatic Design df F(6, Prob > F P> t 0.349 0.222 0.104	0.405 2.410 2.410 5 obs = 930) = 930) = [95% Conf. 0.775 0.804 0.928	1.411 7.923 = 959 = 220441.26 935 = 1.49 = 0.1800 . Interval] 2.059 2.556 2.217
lo l9 cons (running logit Survey: Logist Number of stra Number of PSUs distractio~n classifica~n BDE w/ TD BDE w/ TD BDE w/o TD non-BDE gender male female ageyears 16	0.756 4.370 c on estimati tic regressio ata = s = 0dds Ratio 1.263 1.000 1.434 1.000 1.434 1.000	0.240 1.325 on sample) on 24 959 Linearized Std. Err. 0.314 (base) 0.422 (base) 0.318 (base)	-0.881 4.863 t 0.938 1.223 1.626	0.379 0.000 Number of Populatic Design df F(6, Prob > F P> t 0.349 0.222 0.104	0.405 2.410 2.410 5 obs = 930) = 930) = [95% Conf. 0.775 0.804 0.928	1.411 7.923 220441.26 935 1.49 0.1800 . Interval] 2.059 2.556 2.217
lo l9 cons (running logit Survey: Logist Number of stra Number of PSUs distractio~n classifica~n BDE w/ TD BDE w/ TD BDE w/ TD BDE w/ TD non-BDE gender male female ageyears 16 17	0.756 4.370 c on estimati tic regressio ata = s = Odds Ratio 1.263 1.000 1.434 1.000 1.434 1.000 1.434	0.240 1.325 on sample) on 24 959 Linearized Std. Err. 0.314 (base) 0.422 (base) 0.318 (base) 0.474	-0.881 4.863 t 0.938 1.223 1.626 1.173	0.379 0.000 Number of Populatic Design df F(6, Prob > F P> t 0.349 0.222 0.104 0.241	0.405 2.410 2.410 5 obs = 930) = 930) = [95% Conf. 0.775 0.804 0.928 0.774	1.411 7.923 220441.26 935 1.49 0.1800 . Interval] 2.059 2.556 2.217 2.765
lo l9 cons (running logit Survey: Logist Number of strr Number of PSUs distractio~n classifica~n BDE w/ TD BDE w/ TD BDE w/ TD BDE w/ TD non-BDE gender male female ageyears 16 17 18	0.756 4.370 c on estimati cic regressio ata = s = Odds Ratio 1.263 1.000 1.434 1.000 1.434 1.000 1.434	0.240 1.325 on sample) on 24 959 Linearized Std. Err. 0.314 (base) 0.422 (base) 0.318 (base) 0.474 0.354	-0.881 4.863 t 0.938 1.223 1.626 1.173 0.268	0.379 0.000 Number of Populatic Design df F(6, Prob > F P> t 0.349 0.222 0.104 0.241 0.789	0.405 2.410 2.410 5 obs = 930) = 930) = [95% Conf. 0.775 0.804 0.928 0.774 0.577	1.411 7.923 220441.26 935 1.49 0.1800 . Interval] 2.059 2.556 2.217 2.765 2.061
lo l9 cons (running logit Survey: Logist Number of stra Number of PSUs distractio~n classifica~n BDE w/ TD BDE w/ TD BDE w/o TD non-BDE gender male female ageyears 16 17 18 19	0.756 4.370 c on estimati cic regressio ata = s = Odds Ratio 1.263 1.000 1.434 1.000 1.434 1.000 1.434 1.000 1.463 1.091 0.756	0.240 1.325 on sample) on 24 959 Linearized Std. Err. 0.314 (base) 0.422 (base) 0.318 (base) 0.318 (base) 0.474 0.354 0.240	-0.881 4.863 t 0.938 1.223 1.626 1.173 0.268 -0.881	0.379 0.000 Number of Populatic Design df F(6, Prob > F P> t 0.349 0.222 0.104 0.241 0.789 0.379	0.405 2.410 5 obs = 930) = 930) = [95% Conf. 0.775 0.804 0.928 0.774 0.577 0.405	1.411 7.923 220441.26 935 1.49 0.1800 . Interval] 2.059 2.556 2.217 2.765 2.061 1.411
lo l9 cons (running logit Survey: Logist Number of stra Number of PSUs distractio~n classifica~n BDE w/o TD BDE w/o TD non-BDE gender male female ageyears 16 17 18 19	0.756 4.370 c on estimati cic regressio ata = s = 0dds Ratio 1.263 1.000 1.434 1.000 1.434 1.000 1.434 1.000 1.434	0.240 1.325 on sample) on 24 959 Linearized Std. Err. 0.314 (base) 0.422 (base) 0.318 (base) 0.318 (base) 0.474 0.354 0.240 1.200	-0.881 4.863 t 0.938 1.223 1.626 1.173 0.268 -0.881	0.379 0.000 Number of Populatic Design df F(6, Prob > F P> t 0.349 0.222 0.104 0.241 0.789 0.379	0.405 2.410 5 obs = 930) = 930) = [95% Conf. 0.775 0.804 0.928 0.774 0.577 0.405 1.005	1.411 7.923 220441.26 935 1.49 0.1800 Interval] 2.059 2.556 2.217 2.765 2.061 1.411

Figure 5-57: How often do young drivers drive on 400-series highways during G1 licence period?

Number of strata	= 24		Number of obs	= 974
Number of PSUs	= 974		Population siz	e = 223239.08
			Design df	= 950
How often				· · · · · · · · · · · · · · · · · · ·
do/did you				
drive on				
400-series				
highways during		classif	ication	
C12	אר / ד	BDF W/O	non-BDF	Total
G1:	BDE W/ I	BDE W/O		
Never	73.85	80.64	79.8	77.31
	[69.03,78.16]	[73.16,86.42]	[73.8,84.72]	[73.92,80.37]
Once	14.34	14.59	12.49	14.02
	[11.13,18.27]	[9.648,21.47]	[8.54,17.91]	[11.54,16.94]
Sometimes	6.858	3.313	4.837	5.286
	[4.626,10.05]	[1.265,8.399]	[2.597,8.833]	[3.806,7.298]
Often	3.738	.4996	2.017	2.329
	[2.182,6.331]	[.1004,2.448]	[.9053,4.434]	[1.499,3.601]
Very Often	1.216	.9575	.8522	1.055
	[.4125,3.528]	[.1331,6.553]	[.2553,2.805]	[.4548,2.428]
Total	100	100	100	100
<u> </u>				
Key: column pe	ercentages			
[95% conf	idence interval	s for column pe	ercentages]	
- ·				
Pearson:	1.1.0 (0.)			
Uncorrected	chi2(8)	= 14.9386	D 0.0505	
Design-based	F(6.72, 6380.7	(4) = 1.2764	P = 0.2595	

Figure 5-58: How often do young drivers drive on 400-series highways during G2 licence period?

Number of PSUs = 853 Population size = 199090.43 Design df = 833 How often do/did you drive on 400-series highways during G2? classification BDE w/ T Design df = 833 Never 22.83 31.8 29.28 26.81 [18.81,27.41] [24.39,40.28] [22.66,36.9] [23.3,30.63] Once 19.66 25.27 27.47 22.68 [15.9,24.07] [18.68,33.23] [20.77,35.36] [19.43,26.29] Sometimes 20.08 14.86 16.33 17.77 [16.28,24.51] [9.763,21.97] [11.3,23.03] [14.89,21.06] Often 17.23 16.16 13.26 16.31 [13.6,21.59] [10.72,23.63] [8.774,19.55] [13.44,19.66] Very Often 20.19 11.9 13.66 16.44 [16.26,24.79] [7.446,18.5] [9.002,20.2] [13.66,19.65] Total 100 100 100 100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
How often do/did you drive on 400-series highways during G2? classification BDE w/ T classification BDE w/ T Total Never 22.83 31.8 29.28 26.81 [18.81,27.41] [24.39,40.28] [22.66,36.9] [23.3,30.63] Once 19.66 25.27 27.47 22.68 [15.9,24.07] [18.68,33.23] [20.77,35.36] [19.43,26.29] Sometimes 20.08 14.86 16.33 17.77 [16.28,24.51] [9.763,21.97] [11.3,23.03] [14.89,21.06] Often 17.23 16.16 13.26 16.31 [13.6,21.59] [10.72,23.63] [8.774,19.55] [13.44,19.66] Very Often 20.19 11.9 13.66 16.44 [16.26,24.79] [7.446,18.5] [9.002,20.2] [13.66,19.65] Total 100 100 100 100
How often do/did you drive on 400-series highways during G2? classification BDE w/ T classification BDE w/ O Total Never 22.83 31.8 29.28 26.81 [18.81,27.41] [24.39,40.28] [22.66,36.9] [23.3,30.63] Once 19.66 25.27 27.47 22.68 [15.9,24.07] [18.68,33.23] [20.77,35.36] [19.43,26.29] Sometimes 20.08 14.86 16.33 17.77 [16.28,24.51] [9.763,21.97] [11.3,23.03] [14.89,21.06] Often 17.23 16.16 13.26 16.31 [13.6,21.59] [10.72,23.63] [8.774,19.55] [13.44,19.66] Very Often 20.19 11.9 13.66 16.44 [16.26,24.79] [7.446,18.5] [9.002,20.2] [13.66,19.65] Total 100 100 100 100
do/did you drive on 400-series highways during G2? classification BDE w/ T Total Never 22.83 31.8 29.28 26.81 Never 22.83 31.8 29.28 26.81 Never 22.83 31.8 29.28 26.81 Once 19.66 25.27 27.47 22.68 Once 19.66 25.27 27.47 22.68 Sometimes 20.08 14.86 16.33 17.77 I6.28,24.07] [18.68,33.23] [20.77,35.36] [19.43,26.29] Sometimes 20.08 14.86 16.33 17.77 [16.28,24.51] [9.763,21.97] [11.3,23.03] [14.89,21.06] Often 17.23 16.16 13.26 16.31 [13.6,21.59] [10.72,23.63] [8.774,19.55] [13.44,19.66] Very Often 20.19 11.9 13.66 16.44 [16.26,24.79] [7.446,18.5] [9.002,20.2] [13.66,19.65] Total 100 100 100
drive on 400-series highways during G2?EDE w/ TClassification BDE w/ TTotalNever22.8331.829.2826.81[18.81,27.41][24.39,40.28][22.66,36.9][23.3,30.63]Once19.6625.2727.4722.68[15.9,24.07][18.68,33.23][20.77,35.36][19.43,26.29]Sometimes20.0814.8616.3317.77[16.28,24.51][9.763,21.97][11.3,23.03][14.89,21.06]Often17.2316.1613.2616.31[13.6,21.59][10.72,23.63][8.774,19.55][13.44,19.66]Very Often20.1911.913.6616.44[16.26,24.79][7.446,18.5][9.002,20.2][13.66,19.65]Total100100100100
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
G2? BDE w/ T BDE w/o non-BDE Total Never 22.83 31.8 29.28 26.81 [18.81,27.41] [24.39,40.28] [22.66,36.9] [23.3,30.63] Once 19.66 25.27 27.47 22.68 [15.9,24.07] [18.68,33.23] [20.77,35.36] [19.43,26.29] Sometimes 20.08 14.86 16.33 17.77 [16.28,24.51] [9.763,21.97] [11.3,23.03] [14.89,21.06] Often 17.23 16.16 13.26 16.31 [13.6,21.59] [10.72,23.63] [8.774,19.55] [13.44,19.66] Very Often 20.19 11.9 13.66 16.44 [16.26,24.79] [7.446,18.5] [9.002,20.2] [13.66,19.65] Total 100 100 100 100
Never 22.83 31.8 29.28 26.81 [18.81,27.41] [24.39,40.28] [22.66,36.9] [23.3,30.63] Once 19.66 25.27 27.47 22.68 [15.9,24.07] [18.68,33.23] [20.77,35.36] [19.43,26.29] Sometimes 20.08 14.86 16.33 17.77 [16.28,24.51] [9.763,21.97] [11.3,23.03] [14.89,21.06] Often 17.23 16.16 13.26 16.31 [13.6,21.59] [10.72,23.63] [8.774,19.55] [13.44,19.66] Very Often 20.19 11.9 13.66 16.44 [16.26,24.79] [7.446,18.5] [9.002,20.2] [13.66,19.65] Total 100 100 100 100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Once19.6625.2727.4722.68[15.9,24.07][18.68,33.23][20.77,35.36][19.43,26.29]Sometimes20.0814.8616.3317.77[16.28,24.51][9.763,21.97][11.3,23.03][14.89,21.06]Often17.2316.1613.2616.31[13.6,21.59][10.72,23.63][8.774,19.55][13.44,19.66]Very Often20.1911.913.6616.44[16.26,24.79][7.446,18.5][9.002,20.2][13.66,19.65]Total100100100100
Sometimes [15.9,24.07] [18.68,33.23] [20.77,35.36] [19.43,26.29] Sometimes 20.08 14.86 16.33 17.77 [16.28,24.51] [9.763,21.97] [11.3,23.03] [14.89,21.06] Often 17.23 16.16 13.26 16.31 [13.6,21.59] [10.72,23.63] [8.774,19.55] [13.44,19.66] Very Often 20.19 11.9 13.66 16.44 [16.26,24.79] [7.446,18.5] [9.002,20.2] [13.66,19.65] Total 100 100 100 100
Sometimes 20.08 14.86 16.33 17.77 [16.28,24.51] [9.763,21.97] [11.3,23.03] [14.89,21.06] Often 17.23 16.16 13.26 16.31 [13.6,21.59] [10.72,23.63] [8.774,19.55] [13.44,19.66] Very Often 20.19 11.9 13.66 16.44 [16.26,24.79] [7.446,18.5] [9.002,20.2] [13.66,19.65] Total 100 100 100 100
Sometimes 20.08 14.86 16.33 17.77 [16.28,24.51] [9.763,21.97] [11.3,23.03] [14.89,21.06] Often 17.23 16.16 13.26 16.31 [13.6,21.59] [10.72,23.63] [8.774,19.55] [13.44,19.66] Very Often 20.19 11.9 13.66 16.44 [16.26,24.79] [7.446,18.5] [9.002,20.2] [13.66,19.65] Total 100 100 100 100
[16.28,24.51] [9.763,21.97] [11.3,23.03] [14.89,21.06] Often 17.23 16.16 13.26 16.31 [13.6,21.59] [10.72,23.63] [8.774,19.55] [13.44,19.66] Very Often 20.19 11.9 13.66 16.44 [16.26,24.79] [7.446,18.5] [9.002,20.2] [13.66,19.65] Total 100 100 100 100
Often 17.23 16.16 13.26 16.31 [13.6,21.59] [10.72,23.63] [8.774,19.55] [13.44,19.66] Very Often 20.19 11.9 13.66 16.44 [16.26,24.79] [7.446,18.5] [9.002,20.2] [13.66,19.65] Total 100 100 100 100
Very Often 20.19 11.9 13.66 16.44 [16.26,24.79] [7.446,18.5] [9.002,20.2] [13.66,19.65] Total 100 100 100 100
Very Often 20.19 11.9 13.66 16.44 [16.26,24.79] [7.446,18.5] [9.002,20.2] [13.66,19.65] Total 100 100 100 100
Very often 20.19 11.9 13.00 10.44 [16.26,24.79] [7.446,18.5] [9.002,20.2] [13.66,19.65] Total 100 100 100 100
Total 100 100 100 100
Total 100 100 100 100
Key: column percentages
[95% confidence intervals for column percentages]
Deargon
$\frac{1}{1000}$
Design-based $F(7.05, 5876.29) = 1.9416$ P = 0.0586

Traffic Injury Research Foundation

Figure 5-59: Logistic regression

Number of stra	ata =	20		Number of	ohs =	853
Number of PSU	= =	853		Populatio	nsize =	199090 43
11411201 01 100	-	000		Design df	=	833
				F(6	828) =	6 38
				Prob > F	===	0 0000
				1100 - 1		0.0000
1		Linearized				
highwa~2_reg	Odds Ratio	Std. Err.	t	P> t	[95% Conf.	Interval]
classifica~n						
BDE w/ TD	1.000	(base)				
BDE w/o TD	0.534	0.125	-2.680	0.008	0.337	0.845
non-BDE	0.484	0.109	-3.217	0.001	0.311	0.754
gender						
gender	1 000	(here)				
famale	1.000	(Dase)	0 706	0 005	0 417	0 0 0 0 0
Iemale	0.598	0.110	-2.796	0.005	0.41/	0.858
ageyears						
16	1.000	(base)				
17	1.998	0.568	2.435	0.015	1.144	3.491
18	3.602	1.078	4.284	0.000	2.002	6.480
19	4,150	1.258	4.695	0.000	2.289	7.525
	11200	1.200	1.000	0.000	2.200	/.020
_cons	0.276	0.071	-5.036	0.000	0.167	0.456
Survey: Logist	tic regressio	n				
Survey: Logist Number of stra	tic regressio ata =	n 20		Number of	obs =	853
Survey: Logist Number of stra Number of PSUs	tic regressio ata = s =	n 20 853		Number of Population	obs = n size =	853 199090.43
Survey: Logis Number of stra Number of PSU:	tic regressio ata = s =	n 20 853		Number of Population Design df	obs = n size = =	853 199090.43 833
Survey: Logist Number of stra Number of PSUs	tic regressio ata = s =	n 20 853		Number of Population Design df F(6,	obs = n size = = 828) =	853 199090.43 833 6.38
Survey: Logist Number of stra Number of PSUa	tic regressio ata = s =	n 20 853		Number of Populatio Design df F(6, Prob > F	obs = n size = 828) = =	853 199090.43 833 6.38 0.0000
Survey: Logist Number of stra Number of PSU	tic regressio ata = s =	n 20 853		Number of Population Design df F(6, Prob > F	obs = n size = 828) = =	853 199090.43 833 6.38 0.0000
Survey: Logist Number of str: Number of PSU:	tic regressio ata = s =	n 20 853 Linearized		Number of Population Design df F(6, Prob > F	obs = n size = 828) = =	853 199090.43 833 6.38 0.0000
Survey: Logist Number of stra Number of PSUs highwa~2_reg	tic regressio ata = s = Odds Ratio	n 20 853 Linearized Std. Err.	t	Number of Population Design df F(6, Prob > F P> t	obs = n size = 828) = = [95% Conf.	853 199090.43 833 6.38 0.0000 Interval]
Survey: Logist Number of stra Number of PSU: 	tic regressio ata = 5 = Odds Ratio	n 20 853 Linearized Std. Err.	t	Number of Population Design df F(6, Prob > F P> t	obs = n size = 828) = [95% Conf.	853 199090.43 833 6.38 0.0000 Interval]
Survey: Logist Number of stra Number of PSUs highwa~2_reg classifica~n BDE w/ TD	tic regressio ata = s = Odds Ratio 1.874	n 20 853 Linearized Std. Err. 0.439	t 2.680	Number of Population Design df F(6, Prob > F P> t 0.008	obs = n size = 828) = [95% Conf. 1.183	853 199090.43 833 6.38 0.0000 Interval]
Survey: Logist Number of stra Number of PSUs highwa~2_reg classifica~n BDE w/ TD BDE w/o TD	tic regressio ata = s = Odds Ratio 1.874 1.000	n 20 853 Linearized Std. Err. 0.439 (base)	t 2.680	Number of Population Design df F(6, Prob > F P> t 0.008	obs = n size = 828) = [95% Conf. 1.183	853 199090.43 833 6.38 0.0000 Interval] 2.968
Survey: Logist Number of stra Number of PSUs highwa~2_reg classifica~n BDE w/ TD BDE w/o TD non-BDE	tic regressio ata = s = Odds Ratio 1.874 1.000 0.907	n 20 853 Linearized Std. Err. 0.439 (base) 0.246	t 2.680 -0.359	Number of Population Design df F(6, Prob > F P> t 0.008 0.720	obs = n size = 828) = [95% Conf. 1.183 0.533	853 199090.43 833 6.38 0.0000 Interval] 2.968 1.544
Survey: Logist Number of stra Number of PSUs highwa~2_reg classifica~n BDE w/ TD BDE w/o TD non-BDE	tic regressio ata = 5 = Odds Ratio 1.874 1.000 0.907	n 20 853 Linearized Std. Err. 0.439 (base) 0.246	t 2.680 -0.359	Number of Population Design df F(6, Prob > F P> t 0.008 0.720	obs = n size = 828) = [95% Conf. 1.183 0.533	853 199090.43 833 6.38 0.0000 Interval] 2.968 1.544
Survey: Logist Number of stra Number of PSUs highwa~2_reg classifica~n BDE w/ TD BDE w/o TD non-BDE gender	tic regressio ata = 5 = Odds Ratio 1.874 1.000 0.907	n 20 853 Linearized Std. Err. 0.439 (base) 0.246	t 2.680 -0.359	Number of Population Design df F(6, Prob > F P> t 0.008 0.720	obs = n size = 828) = [95% Conf. 1.183 0.533	853 199090.43 833 6.38 0.0000 Interval] 2.968 1.544
Survey: Logist Number of stra Number of PSUs highwa~2_reg classifica~n BDE w/ TD BDE w/o TD non-BDE gender male	tic regressio ata = s = Odds Ratio 1.874 1.000 0.907 1.000	n 20 853 Linearized Std. Err. 0.439 (base) 0.246 (base)	t 2.680 -0.359	Number of Population Design df F(6, Prob > F P> t 0.008 0.720	obs = n size = 828) = [95% Conf. 1.183 0.533	853 199090.43 833 6.38 0.0000 Interval] 2.968 1.544
Survey: Logist Number of stra Number of PSUs highwa~2_reg classifica~n BDE w/ TD BDE w/ TD BDE w/o TD non-BDE gender male female	tic regressio ata = 5 = Odds Ratio 1.874 1.000 0.907 1.000 0.598	n 20 853 Linearized Std. Err. 0.439 (base) 0.246 (base) 0.110	t 2.680 -0.359 -2.796	Number of Population Design df F(6, Prob > F P> t 0.008 0.720 0.005	obs = n size = 828) = [95% Conf. 1.183 0.533 0.417	853 199090.43 833 6.38 0.0000 Interval] 2.968 1.544 0.858
Survey: Logist Number of stra Number of PSUs highwa~2_reg classifica~n BDE w/ TD BDE w/ TD BDE w/o TD non-BDE gender male female	tic regressio ata = s = Odds Ratio 1.874 1.000 0.907 1.000 0.598	n 20 853 Linearized Std. Err. 0.439 (base) 0.246 (base) 0.110	t 2.680 -0.359 -2.796	Number of Population Design df F(6, Prob > F P> t 0.008 0.720 0.005	obs = n size = 828) = [95% Conf. 1.183 0.533 0.417	853 199090.43 833 6.38 0.0000 Interval] 2.968 1.544 0.858
Survey: Logist Number of stra Number of PSUs highwa~2_reg classifica~n BDE w/ TD BDE w/ TD BDE w/o TD non-BDE gender male female ageyears	tic regressio ata = s = Odds Ratio 1.874 1.000 0.907 1.000 0.598	n 20 853 Linearized Std. Err. 0.439 (base) 0.246 (base) 0.110 (base)	t 2.680 -0.359 -2.796	Number of Population Design df F(6, Prob > F P> t 0.008 0.720 0.005	obs = n size = 828) = [95% Conf. 1.183 0.533 0.417	853 199090.43 833 6.38 0.0000 Interval] 2.968 1.544 0.858
Survey: Logist Number of stra Number of PSUs highwa~2_reg classifica~n BDE w/ TD BDE w/o TD non-BDE gender male female ageyears 16	tic regressio ata = 5 = Odds Ratio 1.874 1.000 0.907 1.000 0.598 1.000	n 20 853 Linearized Std. Err. 0.439 (base) 0.246 (base) 0.110 (base) 0.552	t 2.680 -0.359 -2.796	Number of Population Design df F(6, Prob > F P> t 0.008 0.720 0.005	obs = n size = 828) = [95% Conf. 1.183 0.533 0.417	853 199090.43 833 6.38 0.0000 Interval] 2.968 1.544 0.858
Survey: Logist Number of stra Number of PSUs highwa~2_reg classifica~n BDE w/ TD BDE w/ TD BDE w/o TD non-BDE gender male female ageyears 16 17	tic regressio ata = s = Odds Ratio 1.874 1.000 0.907 1.000 0.598 1.000 1.998	n 20 853 Linearized Std. Err. (base) 0.246 (base) 0.110 (base) 0.568 1.222	t 2.680 -0.359 -2.796 2.435	Number of Population Design df F(6, Prob > F P> t 0.008 0.720 0.005 0.015	obs = n size = 828) = [95% Conf. 1.183 0.533 0.417 1.144	853 199090.43 833 6.38 0.0000 Interval] 2.968 1.544 0.858 3.491
Survey: Logist Number of stra Number of PSUs highwa~2_reg classifica~n BDE w/ TD BDE w/ TD BDE w/o TD non-BDE gender male female ageyears 16 17 18	tic regressio ata = s = Odds Ratio 1.874 1.000 0.907 1.000 0.598 1.000 1.998 3.602	n 20 853 Linearized Std. Err. 0.439 (base) 0.246 (base) 0.110 (base) 0.568 1.078 1.078	t 2.680 -0.359 -2.796 2.435 4.284	Number of Populatic: Design df F(6, Prob > F P> t 0.008 0.720 0.005 0.005 0.015 0.000	obs = n size = 828) = [95% Conf. 1.183 0.533 0.417 1.144 2.002	853 199090.43 833 6.38 0.0000 Interval] 2.968 1.544 0.858 3.491 6.480
Survey: Logist Number of stra Number of PSUs highwa~2_reg classifica~n BDE w/ TD BDE w/o TD non-BDE gender male female ageyears 16 17 18 19	tic regressio ata = s = Odds Ratio 1.874 1.000 0.907 1.000 0.598 1.000 1.998 3.602 4.150	n 20 853 Linearized Std. Err. (base) 0.246 (base) 0.110 (base) 0.568 1.078 1.258	t 2.680 -0.359 -2.796 2.435 4.284 4.695	Number of Population Design df F(6, Prob > F P> t 0.008 0.720 0.005 0.005 0.015 0.000 0.000	obs = n size = 828) = [95% Conf. 1.183 0.533 0.417 1.144 2.002 2.289	853 199090.43 833 6.38 0.0000 Interval] 2.968 1.544 0.858 3.491 6.480 7.525
Survey: Logist Number of stra Number of PSUs highwa~2_reg classifica~n BDE w/ TD BDE w/o TD non-BDE gender male female ageyears 16 17 18 19 cons	tic regressio ata = s = Odds Ratio 1.874 1.000 0.907 1.000 0.598 1.000 1.998 3.602 4.150 0.147	n 20 853 Linearized Std. Err. (base) 0.246 (base) 0.110 (base) 0.568 1.078 1.258 0.051	t 2.680 -0.359 -2.796 2.435 4.284 4.695 -5.558	Number of Population Design df F(6, Prob > F P> t 0.008 0.720 0.005 0.005 0.015 0.000 0.000 0.000	obs = n size = 828) = [95% Conf. 1.183 0.533 0.417 1.144 2.002 2.289 0.075	853 199090.43 833 6.38 0.0000 Interval] 2.968 1.544 0.858 3.491 6.480 7.525 0.289

Figure 5-60: How often do young drivers operate vehicles during rush hour during G1?

Number of strata	= 24	Nu	Number of obs		
Number of PSUs	= 974	Po	pulation size	= 223239.08	
		De	sign df	= 950	
How often					
do/did vou					
drive during					
rush hour		classifi	cation		
during G1?	BDE w/ TD	BDE w/o TD	non-BDE	Total	
Never	21	31.71	36.12	27.67	
	[17.12,25.48]	[24.77,39.56]	[29.51,43.3]	[24.38,31.22]	
Once	25.87	24.93	25.63	25.52	
	[21.61,30.65]	[18.52,32.67]	[19.86,32.39]	[22.29,29.04]	
Sometimes	32.9	32.37	21.95	30.39	
	[28.2,37.96]	[25.19,40.48]	[16.61,28.41]	[26.92,34.09]	
Often	15.42	8.114	11.64	12.26	
	[12.02,19.58]	[4.886,13.18]	[7.992,16.65]	[10.09,14.83]	
Very Often	4.807	2.884	4.668	4.159	
	[2.998,7.624]	[1.114,7.259]	[2.578,8.307]	[2.905,5.921]	
Total	100	100	100	100	
Key: column pe [95% conf	rcentages idence intervals	for column perce	ntages]		
Pearson:					
Uncorrected	chi2(8)	= 30.7380			
Design-based	F(7.51, 7134.31)	= 2.6346	P = 0.0084		

Figure 5-61: How often do young drivers operate vehicles during rush hour during G2?

Number of strata Number of PSUs	= 20 = 853	20 Number of obs 853 Population size Design df		= 853 = 199090.43 = 833
How often do/did you drive during rush hour		classif	ication	
during G2?	BDE w/ TD	BDE w/o TD	non-BDE	Total
Never	6.799 [4.724,9.693]	8.669 [5.003,14.61]	13.15 [8.678,19.44]	8.33 [6.401,10.77]
Once	13.02 [9.966,16.83]	16.69 [11.21,24.11]	13.83 [9.172,20.31]	14.39 [11.7,17.56]
Sometimes	26.63 [22.34,31.42]	29.94 [22.65,38.41]	22.6 [16.57,30.03]	27.2 [23.65,31.07]
Often	33.12 [28.39,38.21]	25.09 [18.4,33.22]	25.13 [18.67,32.93]	29.25 [25.65,33.12]
Very Often	20.43 [16.54,24.98]	19.62 [13.89,26.98]	25.29 [18.92,32.94]	20.84 [17.75,24.3]
Total	100	100	100	100
Key: column pe [95% conf	ercentages Eidence intervals	for column perce	entages]	
Pearson: Uncorrected Design-based	chi2(8) F(7.15, 5953.61)	= 14.1437 = 1.3157	P = 0.2370	

Figure 5-62: Logistic regression

rushhour_((running logi)	G1_reg : 0=No t on estimati	t Often 1=Of on sample)	ten or Ve	ery Often		
Survey: Logist	tic regressio	n				
Number of stra	ata =	24		Number of	obs =	974
Number of PSUs	3 =	974		Populatio	n size =	223239.08
				Design df	=	950
				F(6,	945) =	2.91
				Prob > F	=	0.0081
		Linearized				
rushho~1_reg	Odds Ratio	Std. Err.	t	P> t	[95% Conf.	Interval]
classifica~n						
BDE w/ TD	1.000	(base)				
BDE w/o TD	0.528	0.150	-2.243	0.025	0.302	0.923
non-BDE	0.967	0.229	-0.140	0.889	0.608	1.538
gender	1 000	(baga)				
famale	1.000	(Dase)	1 466	0 1 4 2	0 405	1 107
Iemale	0.740	0.152	-1.400	0.143	0.495	1.107
ageyears						
16	1.000	(base)				
17	2.126	0.670	2.394	0.017	1.146	3.947
18	1.698	0.554	1.624	0.105	0.896	3.220
19	1.350	0.454	0.892	0.373	0.698	2.612
_cons	0.172	0.053	-5.728	0.000	0.094	0.314
(running logi	t on estimati	on sample)				
Survev: Logist	tic regressio	n				
Number of stra	ata =	24		Number of	obs =	974
Number of PSU:	s =	974		Populatio	n size =	223239.08
				Design df	=	950
				F(6,	945) =	2.91
				Prob > F	=	0.0081
		Linearized				
rushho~1_reg	Odds Ratio	Std. Err.	t	P> t	[95% Conf.	Interval]
classifica~n						
BDE w/ TD	1.893	0.538	2.243	0.025	1.083	3.308
BDE w/o TD	1.000	(base)				
non-BDE	1.831	0.575	1.928	0.054	0.989	3.389
gender						
male	1 000	(base)				
female	0.740	0 152	-1 466	0 1/3	0 495	1 107
remare	0./40	0.13Z	1.100	0.110	0.170	1.10/
ageyears						
16	1.000	(base)				
17	2.126	0.670	2.394	0.017	1.146	3.947
18	1.698	0.554	1.624	0.105	0.896	3.220
19	1.350	0.454	0.892	0.373	0.698	2.612
_cons	0.091	0.035	-6.234	0.000	0.043	0.193
	I					· · · · · · · · · · · · · · · · · · ·

Figure 5-63: Logistic regression

rushhour_((running logit	G2_reg : 0=No t on estimati	t Often 1=Of on sample)	ten or Ve	ery Often		
Survey: Logist	cic regressio	n				
Number of stra Number of PSUa	ata = 5 =	20 853		Number of Populatic Design df F(6, Prob > F	: obs = on size = : = 828) = =	853 199090.43 833 1.36 0.2301
rushho~2_reg	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
classifica~n						
BDE w/ TD	1.000	(base)				
BDE w/o TD	0.648	0.135	-2.089	0.037	0.431	0.974
non-BDE	0.807	0.162	-1.064	0.288	0.544	1.198
gender male female	1.000 0.887	(base) 0.151	-0.702	0.483	0.635	1.239
ageyears						
16	1.000	(base)				
17	0.924	0.210	-0.345	0.730	0.592	1.445
18	1.270	0.308	0.984	0.326	0.788	2.045
19	1.321	0.329	1.117	0.264	0.810	2.153
_cons	1.096	0.221	0.453	0.651	0.737	1.628
(running logi	. on estimati	on sample)				
Survey: Logist	cic regressio	n				
Number of stra	ata =	20		Number of	obs =	853
Number of PSU:	3 =	853		Populatio	on size =	199090.43
				Design df	=	833
				F(6, Drob N F	828) =	1.36
				Prob > F	=	0.2301
rushho~2_reg	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
	1 544	0 2 2 1	2 0 0 0	0 0 2 7	1 0 0 7	0 201
BDE W/ ID	1.544	(1)	2.089	0.037	1.027	2.321
non-BDE	1.246	(Dase) 0.300	0.913	0.361	0.777	1,998
gender						
male	1.000	(base)				
female	0.887	0.151	-0.702	0.483	0.635	1.239
ageveare						
ayeyears 16	1 000	(bage)				
10	1.000	(Dase)	0 345	0 720	0 500	1 445
10	1 270	0.210	0.040	0.730	0.374	7.440
10	1 201	0.300	0.904	0.320	0.700	2.040
19	1.341	0.329	1.11/	0.∠04	υ.810	2.153
_cons	0.710	0.206	-1.182	0.238	0.402	1.254

Figure 5-64: How often do young drivers operate vehicles at night during G1?

Number of strata	= 24	Nu	mber of obs	= 974
Number of PSUs	= 974	Pc	= 223239.08	
		De	sign df	= 950
How often				
do/did you				
drive at night		classifi	cation	
during G1?	BDE w/ TD	BDE w/o TD	non-BDE	Total
Never	15.3	31.51	29.5	23.54
	[11.87,19.49]	[24.52,39.44]	[23.14,36.77]	[20.38,27.03]
Once	21.57	16.25	12.5	17.92
	[17.52,26.27]	[11.17,23.06]	[8.32,18.35]	[15.13,21.1]
Sometimes	29.11	35.85	28.53	31.16
	[24.64,34.03]	[28.52,43.91]	[22.69,35.19]	[27.69,34.84]
Often	21.86	14.11	21.11	19.21
	[17.99,26.29]	[9.736,20.01]	[15.88,27.51]	[16.54,22.18]
Very Often	12.16	2.281	8.363	8.173
	[9.164,15.97]	[.7324,6.879]	[5.366,12.81]	[6.431,10.33]
Total	100	100	100	100
Key: column pe	ercentages	for column perce	ntagesl	
[95% COIL	Idence incervais :	tor cordinir perce	incages	
Pearson:				
Uncorrected	chi2(8) :	= 63.6163		
Design-based	F(7.44, 7064.70)	= 5.2583	P = 0.0000	

Figure 5-65: How often do young drivers operate vehicles at night during G2?

Number of strata	a = 20	Nu	umber of obs	= 853
Number of PSUs	= 853	Pc	Population size Design df	
		De		
	1			
How often do				
you drive at				
night during		classifi	.cation	
G2?	BDE w/ TD	BDE w/o TD	non-BDE	Total
Never	3.139	4.956	7.364	4.354
	[1.744,5.588]	[2.366,10.09]	[3.948,13.33]	[2.951,6.38]
Once	1.74	12.59	4.836	5.891
	[.8624,3.48]	[7.71,19.89]	[2.19,10.34]	[4.031,8.531]
Sometimes	15.46	13.37	17.97	15.1
	[12.04,19.64]	[8.47,20.47]	[12.49,25.18]	[12.37,18.3]
Often	35.01	28.73	18.28	30.51
	[30.22,40.12]	[21.78,36.86]	[13.11,24.91]	[26.9,34.38]
Very Often	44.65	40.35	51.54	44.15
_	[39.59,49.83]	[32.44,48.8]	[43.5,59.51]	[40.15,48.22]
Total	100	100	100	100
Key: column p	percentages			
[95% cor	fidence intervals	for column perce	entages]	
Pearson:				
Uncorrected	chi2(8)	= 52.4248		
Design-based	ł F(7.25, 6039.76)= 4.9376	P = 0.0000	

Figure 5-66: Logistic regression

	g_GI_reg : U=	Not Often 1=	Often or	Very Often		
(running logit	: on estimati	on sample)				
Survey: Logist	ic regressio	n				
Number of stra	ata =	24		Number of	obs =	974
Number of PSUs		974		Populatio	n size =	223239.08
				Design df	=	950
				F(6,	945) =	4.78
				Prob > F	=	0.0001
		Linearized				
nightd~1_reg	Odds Ratio	Std. Err.	t	P> t	[95% Conf.	Interval]
						<u></u>
classifica~n						
BDE w/ TD	1.000	(base)				
BDE w/o TD	0.400	0.094	-3.909	0.000	0.252	0.634
non-BDE	0.927	0.174	-0.404	0.687	0.641	1.341
gender						
male	1 000	(bace)				
famala	1.000	(Dase)	2 260	0 0 0 4	0 400	0 0 5 1
Iemale	0.681	0.116	-2.260	0.024	0.488	0.951
ageyears						
16	1.000	(base)				
17	1.590	0.409	1.804	0.071	0.960	2.633
18	1.337	0.353	1.099	0.272	0.796	2.245
19	1.185	0.316	0.635	0.526	0.702	1.999
	0 460	0 119	-3 001	0 002	0 077	0 764
_cons	0.400	0.119	-3.001	0.003	0.277	0.764
(running logit	on estimati	on sample)	-5.001	0.003	0.277	0.764
(running logit Survey: Logist	on estimati	on sample)	-3.001	0.003	0.277	0.764
(running logit Survey: Logist	: on estimati	on sample)	-3.001	0.003	0.277	0.764
(running logit Survey: Logist Number of stra	t on estimati tic regressio	on sample) n 24		Number of	obs =	974
(running logit Survey: Logist Number of stra Number of PSUs	t on estimati tic regressio ata = s =	on sample) n 24 974	-3.001	Number of Populatio	obs = n size =	974 223239.08
(running logit Survey: Logist Number of stra Number of PSUs	t on estimati tic regressio ata = 3 =	on sample) n 24 974	-3.001	Number of Populatio Design df	obs = n size = =	974 223239.08 950
(running logit Survey: Logist Number of stra Number of PSUs	t on estimati tic regressio ata = s =	on sample) n 24 974	-3.001	Number of Populatio Design df F(6,	obs = n size = 945) =	974 223239.08 950 4.78
(running logit Survey: Logist Number of stra Number of PSUs	t on estimati tic regressio ata = s =	on sample) n 24 974		Number of Populatio Design df F(6, Prob > F	obs = n size = 945) =	974 223239.08 950 4.78 0.0001
(running logit Survey: Logist Number of stra Number of PSUs	t on estimati tic regressio ata = s =	on sample) n 24 974	-5.001	Number of Populatio Design df F(6, Prob > F	obs = n size = 945) =	974 223239.08 950 4.78 0.0001
(running logit Survey: Logist Number of stra Number of PSUs	t on estimati tic regressio ata = s =	on sample) n 24 974 Linearized	-5.001	Number of Populatio Design df F(6, Prob > F	obs = n size = 945) =	974 223239.08 950 4.78 0.0001
(running logit Survey: Logist Number of stra Number of PSUs nightd~1_reg	offic on estimati tic regressio ata = s = Odds Ratio	on sample) n 24 974 Linearized Std. Err.	-3.001	Number of Populatio Design df F(6, Prob > F P> t	obs = n size = 945) = [95% Conf.	974 223239.08 950 4.78 0.0001 Interval]
(running logit Survey: Logist Number of stra Number of PSUs nightd~1_reg	on estimati tic regressio ata = s = Odds Ratio	on sample) n 24 974 Linearized Std. Err.	-3.001	Number of Populatio Design df F(6, Prob > F P> t	obs = n size = 945) = [95% Conf.	974 223239.08 950 4.78 0.0001 Interval]
(running logit Survey: Logist Number of stra Number of PSUs 	offic on estimati tic regressio ata = s = Odds Ratio	on sample) n 24 974 Linearized Std. Err.	-3.001	Number of Populatio Design df F(6, Prob > F P> t	obs = n size = 945) = [95% Conf.	974 223239.08 950 4.78 0.0001 Interval]
 (running logit Survey: Logist Number of stra Number of PSUs nightd~1_reg classifica~n BDE w/ TD	on estimati tic regressio ata = 5 = Odds Ratio 2.501	on sample) n 24 974 Linearized Std. Err. 0.586	t 3.909	Number of Populatio Design df F(6, Prob > F P> t 0.000	obs = n size = 945) = [95% Conf. 1.579	974 223239.08 950 4.78 0.0001 Interval]
 (running logit Survey: Logist Number of stra Number of PSUs nightd~1_reg classifica~n BDE w/ TD BDE w/o TD	on estimati tic regressio ata = s = Odds Ratio 2.501 1.000	on sample) n 24 974 Linearized Std. Err. 0.586 (base)	t 3.909	Number of Populatio Design df F(6, Prob > F P> t 0.000	obs = n size = 945) = [95% Conf. 1.579	974 223239.08 950 4.78 0.0001 Interval]
 (running logit Survey: Logist Number of stra Number of PSUs nightd~1_reg classifica~n BDE w/ TD BDE w/ TD BDE w/o TD non-BDE	on estimati tic regressio ata = s = Odds Ratio 2.501 1.000 2.318	on sample) n 24 974 Linearized Std. Err. 0.586 (base) 0.593	t 3.909 3.287	Number of Populatio Design df F(6, Prob > F P> t 0.000 0.001	obs = n size = 945) = [95% Conf. 1.579 1.403	974 223239.08 950 4.78 0.0001 Interval] 3.963 3.829
cons (running logit Survey: Logist Number of stra Number of PSUs nightd~1_reg classifica~n BDE w/ TD BDE w/ TD BDE w/o TD non-BDE	Odds Ratio 2.501 1.000 2.318	on sample) n 24 974 Linearized Std. Err. 0.586 (base) 0.593	t 3.909 3.287	Number of Populatio Design df F(6, Prob > F P> t 0.000 0.001	obs = n size = 945) = [95% Conf. 1.579 1.403	974 223239.08 950 4.78 0.0001 Interval] 3.963 3.829
cons (running logit Survey: Logist Number of stra Number of PSUs nightd~1_reg classifica~n BDE w/ TD BDE w/o TD non-BDE gender	Odds Ratio 2.501 2.318	on sample) n 24 974 Linearized Std. Err. 0.586 (base) 0.593	t 3.909 3.287	Number of Populatio Design df F(6, Prob > F P> t 0.000 0.001	obs = n size = 945) = [95% Conf. 1.579 1.403	974 223239.08 950 4.78 0.0001 Interval] 3.963 3.829
cons (running logit Survey: Logist Number of stra Number of PSUs nightd~1_reg classifica~n BDE w/ TD BDE w/o TD non-BDE gender male	Odds Ratio	on sample) n 24 974 Linearized Std. Err. 0.586 (base) 0.593 (base)	t 3.909 3.287	Number of Populatio Design df F(6, Prob > F P> t 0.000 0.001	obs = n size = 945) = [95% Conf. 1.579 1.403	974 223239.08 950 4.78 0.0001 Interval] 3.963 3.829
cons (running logit Survey: Logist Number of stra Number of PSUs nightd~1_reg classifica~n BDE w/ TD BDE w/ TD BDE w/ TD BDE w/ TD son-BDE gender male female	0.100 c on estimati cic regressio ata = s = 0dds Ratio 2.501 1.000 2.318 1.000 0.681	on sample) n 24 974 Linearized Std. Err. 0.586 (base) 0.593 (base) 0.116	t 3.909 3.287 -2.260	Number of Populatio Design df F(6, Prob > F P> t 0.000 0.001 0.024	obs = n size = 945) = [95% Conf. 1.579 1.403 0.488	974 223239.08 950 4.78 0.0001 Interval] 3.963 3.829 0.951
 (running logit Survey: Logist Number of stra Number of PSUs nightd~1_reg classifica~n BDE w/ TD BDE w/ TD BDE w/ TD BDE w/ o TD non-BDE gender male female	0.100 c on estimati cic regressio ata = 3 = 0dds Ratio 2.501 1.000 2.318 1.000 0.681	0.113 on sample) n 24 974 Linearized Std. Err. 0.586 (base) 0.593 (base) 0.116	t 3.909 3.287 -2.260	Number of Populatio Design df F(6, Prob > F P> t 0.000 0.001 0.024	obs = n size = 945) = [95% Conf. 1.579 1.403 0.488	974 223239.08 950 4.78 0.0001 Interval] 3.963 3.829 0.951
cons (running logit Survey: Logist Number of stra Number of PSUs nightd~1_reg classifica~n BDE w/ TD BDE w/ TD BDE w/ TD BDE w/o TD non-BDE gender male female agevears	on estimati con estimati cic regressio ata = odds Ratio 2.501 1.000 2.318 1.000 0.681	on sample) n 24 974 Linearized Std. Err. 0.586 (base) 0.593 (base) 0.116	t 3.909 3.287 -2.260	Number of Populatio Design df F(6, Prob > F P> t 0.000 0.001 0.024	obs = n size = 945) = [95% Conf. 1.579 1.403 0.488	974 223239.08 950 4.78 0.0001 Interval] 3.963 3.829 0.951
cons (running logit Survey: Logist Number of stra Number of PSUs nightd~1_reg classifica~n BDE w/ TD BDE w/ TD BDE w/ TD BDE w/o TD non-BDE gender male female ageyears 16	0.100 c on estimati cic regressio ata = s = 0dds Ratio 2.501 1.000 2.318 1.000 0.681 1.000	on sample) n 24 974 Linearized Std. Err. 0.586 (base) 0.593 (base) 0.116 (base)	t 3.909 3.287 -2.260	Number of Populatio Design df F(6, Prob > F P> t 0.000 0.001 0.024	obs = n size = 945) = [95% Conf. 1.579 1.403 0.488	974 223239.08 950 4.78 0.0001 Interval] 3.963 3.829 0.951
cons (running logit Survey: Logist Number of stra Number of PSUs nightd~1_reg classifica~n BDE w/ TD BDE w/ TD BDE w/ TD BDE w/o TD non-BDE gender male female ageyears 16	0.100 c on estimati cic regressio ata = 3 = 0dds Ratio 2.501 1.000 2.318 1.000 0.681 1.000 1.590	on sample) n 24 974 Linearized Std. Err. 0.586 (base) 0.593 (base) 0.116 (base) 0.409	t 3.909 3.287 -2.260	Number of Populatio Design df F(6, Prob > F P> t 0.000 0.001 0.024	obs = n size = 945) = [95% Conf. 1.579 1.403 0.488	974 223239.08 950 4.78 0.0001 Interval] 3.963 3.829 0.951
cons (running logit Survey: Logist Number of stra Number of PSUs nightd~1_reg classifica~n BDE w/ TD BDE w/ TD BDE w/ TD BDE w/ TD BDE w/ TD non-BDE gender male female ageyears 16 17	0.100 c on estimati c regressio ata = 3 = 0dds Ratio 2.501 1.000 2.318 1.000 0.681 1.000 1.590 1.227	on sample) n 24 974 Linearized Std. Err. 0.586 (base) 0.593 (base) 0.116 (base) 0.409 0.252	t 3.909 3.287 -2.260 1.804	Number of Populatio Design df F(6, Prob > F P> t 0.000 0.001 0.024 0.071 0.272	obs = n size = 945) = [95% Conf. 1.579 1.403 0.488 0.960 0.766	974 223239.08 950 4.78 0.0001 Interval] 3.963 3.829 0.951 2.633 2.245
cons (running logit Survey: Logist Number of stra Number of PSUs nightd~1_reg classifica~n BDE w/ TD BDE w/ TD BDE w/ o TD non-BDE gender male female ageyears 16 17 18	0.100 c on estimati c regressio ata = 3 = 0dds Ratio 2.501 1.000 2.318 1.000 0.681 1.000 1.590 1.337 1.000	on sample) n 24 974 Linearized Std. Err. 0.586 (base) 0.593 (base) 0.116 (base) 0.409 0.353 0.216	t 3.909 3.287 -2.260 1.804 1.099	Number of Populatio Design df F(6, Prob > F P> t 0.000 0.001 0.024 0.024	obs = n size = 945) = [95% Conf. 1.579 1.403 0.488 0.960 0.796 0.796	974 223239.08 950 4.78 0.0001 Interval] 3.963 3.829 0.951 2.633 2.245
cons (running logit Survey: Logist Number of stra Number of PSUs nightd~1_reg classifica~n BDE w/ TD BDE w/ TD BDE w/ o TD non-BDE gender male female ageyears 16 17 18 19	0dds Ratio 0dds Ratio 0dds Ratio 0dds Ratio 0dds Ratio 0.501 1.000 0.681 1.000 1.590 1.337 1.185	on sample) n 24 974 Linearized Std. Err. 0.586 (base) 0.593 (base) 0.116 (base) 0.409 0.353 0.316	t 3.909 3.287 -2.260 1.804 1.099 0.635	Number of Populatio Design df F(6, Prob > F P> t 0.000 0.001 0.024 0.024 0.071 0.272 0.526	obs = n size = 945) = [95% Conf. 1.579 1.403 0.488 0.960 0.796 0.702	974 223239.08 950 4.78 0.0001 Interval] 3.963 3.829 0.951 2.633 2.245 1.999
cons (running logit Survey: Logist Number of stra Number of PSUs nightd~1_reg classifica~n BDE w/ TD BDE w/ TD BD W/ TD	0dds Ratio 0dds Ratio 0dds Ratio 0dds Ratio 0dds Ratio 0.501 1.000 0.681 1.000 1.590 1.337 1.185 0.184	on sample) n 24 974 Linearized Std. Err. 0.586 (base) 0.593 (base) 0.116 (base) 0.409 0.353 0.316 0.058	t 3.909 3.287 -2.260 1.804 1.099 0.635	Number of Populatio Design df F(6, Prob > F P> t 0.000 0.001 0.024 0.071 0.272 0.526	obs = n size = 945) = [95% Conf. 1.579 1.403 0.488 0.960 0.796 0.702	974 223239.08 950 4.78 0.0001 Interval] 3.963 3.829 0.951 2.633 2.245 1.999

Figure 5-67: Logistic regression

nightdriving (running logit	g_G2_reg : 0= t on estimati	Not Often 1= on sample)	Often or	Very Often	L	
Survey: Logist	tic regressio	n				
Number of stra Number of PSUs	ata = 5 =	20 853		Number of Populatic Design df F(6, Prob > F	obs = n size = 828) = =	853 199090.43 833 1.66 0.1268
nightd~2_reg	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
classifica~n BDE w/ TD BDE w/o TD non-BDE	1.000 0.556 0.582	(base) 0.129 0.135	-2.523	0.012	0.352	0.878
gender male female	1.000 1.190	(base) 0.237	0.874	0.382	0.805	1.760
ageyears 16 17 18	1.000 1.417 1.454	(base) 0.391 0.413	1.261	0.208	0.824	2.436 2.539
_cons	2.557	0.417	3.995	0.239	1.612	4.055
(running logit Survey: Logist	t on estimati tic regressio	on sample) n				
Number of stra Number of PSU:	ata = 5 =	20 853		Number of Populatic Design df F(6, Prob > F	obs = on size = 828) = =	853 199090.43 833 1.66 0.1268
nightd~2_reg	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
classifica~n BDE w/ TD BDE w/o TD non-BDE	1.800 1.000 1.047	0.419 (base) 0.279	2.523 0.174	0.012	1.139 0.621	2.844
gender male female	1.000 1.190	(base) 0.237	0.874	0.382	0.805	1.760
ageyears 16 17 18 19	1.000 1.417 1.454 1.416	(base) 0.391 0.413 0.417	1.261 1.317 1.179	0.208 0.188 0.239	0.824 0.832 0.794	2.436 2.539 2.525
_cons	1.420	0.472	1.055	0.292	0.739	2.729

Figure 5-68: How often do young drivers operate vehicles in adverse weather conditions during G1?

Number of strata	= 24	Nu	umber of obs	= 974
Number of PSUs	= 974	Pc	Population size	
		De	sign df	= 950
How often				
do/did you				
drive in				
adverse weather		classifi	.cation	
during G1?	BDE w/ TD	BDE w/o TD	non-BDE	Total
Never	22.27	33.93	37.29	29.23
	[18.24,26.9]	[26.68,42.01]	[30.52,44.59]	[25.82,32.89]
Once	35.6	36.63	24.52	33.56
	[30.78,40.73]	[29.15,44.81]	[19.04,30.97]	[30,37.33]
Sometimes	27.62	23.22	26.1	25.88
	[23.25,32.45]	[17.29,30.42]	[20.24,32.96]	[22.71,29.32]
Often	12.14	4.738	7.384	8.745
	[9.156,15.93]	[2.31,9.473]	[4.511,11.86]	[6.9,11.02]
Very Often	2.372	1.49	4.706	2.587
	[1.221,4.557]	[.4449,4.872]	[2.511,8.65]	[1.676,3.973]
Total	100	100	100	100
Key: column pe [95% conf	rcentages idence intervals :	for column perce	entages]	
Pearson:				
Uncorrected	chi2(8)	= 39.7040		
Design-based	F(7.59, 7209.16)	= 3.4073	P = 0.0008	

Figure 5-69: How often do young drivers operate vehicles in adverse weather conditions during G2?

Number of strata Number of PSUs	= 20 = 853	Nu Po De	= 853 = 199090.43 = 833				
How often							
do/did you drive in							
adverse weather		classifi	cation				
during G2?	BDE w/ TD	BDE w/o TD	non-BDE	Total			
Never	5.95	15.42	11.79	10.01			
	[3.915,8.943]	[10.09,22.86]	[7.358,18.36]	[7.674,12.96]			
Once	12.33	14.71	17.46	13.86			
	[9.278,16.2]	[9.645,21.8]	[11.99,24.74]	[11.24,16.99]			
Sometimes	36.42	31.12	28	33.43			
	[31.6,41.54]	[23.82,39.5]	[21.35,35.79]	[29.67,37.4]			
Often	28.37	29.69	23.89	28.19			
	[23.92,33.28]	[22.55,37.98]	[17.94,31.06]	[24.63,32.05]			
Very Often	16.93	9.062	18.86	14.5			
	[13.34,21.24]	[5.345,14.95]	[13.33,26]	[11.97,17.47]			
Total	100	100	100	100			
Key: column percentages [95% confidence intervals for column percentages]							
Pearson:							
Uncorrected	chi2(8)	= 31.2497					
Design-based	F(7.20, 6001.56)	= 2.8699	P = 0.0050				

Figure 5-70: Logistic regression

weather_G (running logi	l_reg : 0=Not t on estimati	Often 1=Oft on sample)	en or Vei	ry Often		
Survey: Logist	cic regressio	n				
Number of stra Number of PSUs	of strata = 24 of PSUs = 974			Number of Populatic Design df F(6, Prob > F	E obs = on size = E = 945) = =	974 223239.08 950 2.52 0.0201
<u> </u>	[
weather_G1~g	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
classifica~n						
BDE w/ TD	1.000	(base)				
BDE w/o TD	0.401	0.144	-2.536	0.011	0.198	0.814
non-BDE	0.946	0.249	-0.213	0.832	0.564	1.585
gender	1 000					
male	1.000	(base)		0.016		
female	0.559	0.135	-2.416	0.016	0.348	0.897
ageyears						
16	1.000	(base)				
17	1.683	0.646	1.355	0.176	0.792	3.574
18	1 767	0 691	1 457	0 146	0 821	3 806
10	1 415	0.001	1.457	0.202	0.021	2 1 4 2
19	1.415	0.5/5	0.854	0.393	0.637	3.143
_cons	0.140	0.052	-5.278	0.000	0.067	0.291
(running logi	: on estimati	on sample)				
Survey: Logist	cic regressio	n				
Number of stra	ata =	24		Number of	E obs =	974
Number of PSU	3 =	974		Populatio	on size =	223239.08
	-			Degian di	F _	950
						250
				F(6, Prob > F	945) =	0.0201
	F					
weather Clarg	Odda Patio	Linearized	÷	D> +	[95% Conf	Intervall
		Sta. EII.		1 / [0]	[]]] []]]	
classifica~n						
BDE w/ TD	2.491	0.897	2.536	0.011	1.229	5.048
BDE w/o TD	1.000	(base)				
non-BDE	2.355	0.929	2.171	0.030	1.086	5.109
gender						
male	1.000	(base)				
female	0.559	0.135	-2.416	0.016	0.348	0.897
ageyears	1 000					
16	1.000	(base)				
17	1.683	0.646	1.355	0.176	0.792	3.574
18	1.767	0.691	1.457	0.146	0.821	3.806
19	1.415	0.575	0.854	0.393	0.637	3.143
cons	0.056	0.027	-6.038	0.000	0.022	0.143

Figure 5-71: Logistic regression

weather_G (running logit	2_reg : 0=Not t on estimati	Often 1=Oft on sample)	en or Vei	ry Often		
Survey: Logist	tic regressio	n				
Number of stra Number of PSU:	ata = 5 =	20 853		Number of Populatio Design df	obs = n size = =	853 199090.43 833
				F(6, Prob > F	828) =	1.09 0.3660
weather_G2~g	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
classifica~n						
BDE W/ TD	1.000	(base)				
BDE w/o TD	0.719	0.151	-1.571	0.117	0.476	1.086
non-BDE	0.847	0.172	-0.814	0.416	0.568	1.263
gender						
male	1.000	(base)				
female	0.979	0.168	-0.125	0.900	0.699	1.371
ageyears						
16	1.000	(base)				
17	0.901	0.208	-0.452	0.651	0.572	1.418
18	1.358	0.336	1.239	0.216	0.836	2.207
19	1.143	0.288	0.531	0.596	0.697	1.875
	0 760	0 156	1 222	0 1 0 2	0 500	1 1 2 0
	0.760	0.150	-1.333	0.183	0.508	1.138
(running logi	t on estimati	on sample)				
Survey: Logist	tic regressio	n				
Number of stra	ata =	20		Number of	obs =	853
Number of PSU	3 =	853		Populatio	n size =	199090.43
				Design df		833
				F(6	828) -	1 09
				Prob > F	=	0.3660
weather_G2~g	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
classifica~n						
BDE w/ TD	1 391	0 292	1.571	0.117	0.921	2.100
	1 000	(base)	1.0/1	0.111	0.921	21200
non-BDE	1.178	0.287	0.674	0.500	0.731	1.901
gender						
gender	1 000	(bage)				
male	1.000	(Dase)				
female	0.979	0.168	-0.125	0.900	0.699	1.371
ageyears						
16	1.000	(base)				
17	0.901	0.208	-0.452	0.651	0.572	1.418
18	1.358	0.336	1.239	0.216	0.836	2.207
19	1.143	0.288	0.531	0.596	0.697	1.875
_cons	0.547	0.161	-2.051	0.041	0.307	0.974

Figure 5-72: How do young drivers rate their ability to merge into traffic before BDE?

Number of strata	= 16		Number of obs Population size	= 59
Number of 1505	- 551		Design df	= 57
Merging into				
traffic ability before BDE	BDE w/ T	classification BDE w/o	Total	
very poor	5.506 [3.349,8.922]	7.41 [3.864,13.74]	6.285 [4.197,9.31]	
poor	20.37 [15.96,25.62]	22.33 [15.66,30.8]	21.17 [17.26,25.69]	
fair	37.69 [32.3,43.41]	40.3 [31.79,49.43]	38.76 [33.97,43.77]	
good	29.67 [24.67,35.21]	23.41 [16.66,31.84]	27.11 [22.93,31.74]	
very good	6.761 [4.408,10.24]	6.558 [3.1,13.34]	6.678 [4.507,9.787]	
Total	100	100	100	
Key: column pe [95% coni	ercentages fidence interval	.s for column pe	ercentages]	
Pearson:	1 + 2 / 4)	2 4000		
Uncorrected Design-based	Ch12(4) F(3.99, 2294.8	= 3.4099 37)= 0.4866	P = 0.7452	

Figure 5-73: How do young drivers rate their ability to merge into traffic after BDE?

Number of strata	= 16	N	Number of obs	= 744
Number of PSUs	= 744	F	opulation size	= 179529.10
		I)esign df	= 728
Merging into				
traffic ability		classification		
after BDE	BDE w/ T	BDE w/o	Total	
very poor	0	.1519	.06223	
		[.02129,1.075]	[.008731,.442]	
poor	1.186	2.321	1.651	
	[.4545,3.057]	[.7589,6.875]	[.7726,3.492]	
fair	6.255	9.795	7.706	
	[4.198,9.223]	[5.767,16.15]	[5.523,10.65]	
good	42.3	49.71	45.33	
	[37.31,47.45]	[41.7,57.73]	[40.91,49.83]	
very good	50.26	38.02	45.25	
	[45.14,55.38]	[30.65,45.99]	[40.91,49.66]	
Total	100	100	100	
Kev: column pe	ercentages			
[95% conf	idence intervals	for column perc	centages]	
Pearson:				
Uncorrected	chi2(4)	= 13.1358		
Design-based	F(3.48, 2534.49)= 2.3555	P = 0.0605	

Figure 5-74: Logistic regression

Number of stra	ata =	16		Number of	obs =	591
Number of PSUs	3 =	591		Populatior	n size =	139177.97
				Design df	=	575
				F(5,	571) =	2.65
				Prob > F	=	0.0220
		Linearized				
skill_merg~e	Odds Ratio	Std. Err.	t	P> t	[95% Conf.	Interval]
classifica~n						
BDE w/ TD	1.000	(base)				
BDE w/o TD	0.739	0.176	-1.270	0.204	0.463	1.180
gender						
male	1.000	(base)				
female	0.475	0.105	-3.369	0.001	0.308	0.733
agevears						
16	1.000	(base)				
17	1.003	0.261	0.011	0.991	0.602	1.672
18	1.028	0.297	0.095	0.924	0.583	1.812
19	0.869	0.265	-0.460	0.646	0.477	1.582
_cons	0.866	0.214	-0.581	0.561	0.533	1.408

Figure 5-75: Logistic regression

Logistic Regression of rating_merging, controlling for BDE statu > d 0 = Not Good							Good/Very Goo
(running iogi	t on estimati	on sampie)					
Survey: Logist	tic regressio	'n					
Number of stra	ata =	16		Number o	of obs	=	1335
Number of PSUs	s =	1335		Populati	on size	=	318707.13
				Design d	lf	=	1319
				F(6,	1314)	=	5.11
				Prob > F	,	=	0.0000
		Linearized					
rating_mer~g	Odds Ratio	Std. Err.	t	P> t	[95% Con	f.	Interval]
after	1.601	0.229	3.287	0.001	1.209		2.120
classifica~2							
BDE w/o TD	1.000	(base)					
BDE w/ TD	1.292	0.196	1.690	0.091	0.960)	1.738
,							
gender	1 000	(1)					
female	1.000	(base)	-3 006	0 000	0 430		0 749
Telliate	0.567	0.080	-3.990	0.000	0.430		0.749
ageyears							
16	1.000	(base)					
17	1.073	0.178	0.427	0.669	0.776		1.485
18	1.010	0.187	0.055	0.956	0.703		1.452
19	0.934	0.177	-0.360	0.719	0.644		1.355
_cons	0.581	0.117	-2.706	0.007	0.392	!	0.861

Figure 5-76: Logistic regression

Logistic Regression of rating_merging w/ interaction variable BDE status (running logit on estimation sample)									
Survey: Logistic regression									
Number of strata = 16 Number of obs = 1335									
Number of PSUs	s =	1335		Populatio	on size =	318707.13			
				Design d:	E =	1319			
				F(7,	1313) =	4.41			
				Prob > F	=	0.0001			
		Linearized							
rating_mer~g	Odds Ratio	Std. Err.	t	₽> t	[95% Conf.	Interval]			
after	1.646	0.436	1.884	0.060	0.980	2.767			
classifica~2									
BDE w/o TD	1.000	(base)							
BDE w/ TD	1.327	0.312	1.205	0.228	0.837	2.104			
gender	1 000	(here)							
fomale	1.000	(base)	4 001	0 000	0 420	0 740			
Temate	0.507	0.080	-4.001	0.000	0.430	0.749			
ageyears									
16	1.000	(base)							
17	1.074	0.178	0.431	0.667	0.776	1.486			
18	1.011	0.187	0.057	0.955	0.703	1.453			
19	0.934	0.177	-0.360	0.719	0.644	1.354			
interaction	0.955	0.296	-0.149	0.881	0.519	1.755			
_cons	0.571	0.138	-2.322	0.020	0.356	0.917			

Figure 5-77: How do non-BDE drivers rate their ability to merge into traffic?

Number of strata	=	8		N	Jumbe	er of ol	os	=		246
Number of PSUs	=	246		Population size			=	48020	.369	
				Ι	Desig	yn df		=		238
Merging into										
traffic ability										
without taking										
BDE	c	olumn	lb		ub					
poor		4.385	1.97	9.	.474					
fair		19.51	14.18	26	5.24					
good		38.1	31.3	4	15.4					
very good		38	31.91	44	1.49					
Total		100								
Key: column	= cc	lumn per	ccentages							
lb	= lc	wer 95%	confidence	bounds	for	column	percent	tag	es	
ub	= up	per 95%	confidence	bounds	for	column	percent	tag	es	

Figure 5-78: Logistic regression

logistic regre	ession After	BDE rating v	s NonBDE	rating 1	=Good/Very	Goo	d 0 =	Not	Go
> od									
(running logit	: on estimati	on sample)							
Survey: Logist	cic regressio	n							
Number of stra	ata =	24		Number	of obs	=		990	
Number of PSUs	5 =	990		Populat	ion size	=	22754	9.53	
				Design	df	=		966	
				F(5,	962)	=		9.18	
				Prob >	F	=	0.	0000	
		Linearized				_			
rating_mer~g	Odds Ratio	Std. Err.	t	₽> t	[95% Coi	nf.	Inter	valj	
after	1.837	0.412	2.714	0.007	1.184	1	2	.852	
ageyears									
16	1.000	(base)							
17	5.509	1.816	5.177	0.000	2.88	5	10	.518	
18	4.301	1.477	4.247	0.000	2.193	2	8	.438	
19	2.014	0.559	2.521	0.012	1.168	3	3	.473	
gender									
male	1.000	(base)							
female	0.662	0.178	-1.532	0.126	0.390	C	1	.123	
_cons	2.203	0.620	2.805	0.005	1.268	3	3	.828	

Figure 5-79: How do drivers rate their ability to make left turns at intersections before BDE?

Number of strata	= 16		Number of obs	= 59
Number of PSUs	= 591		Population size	= 139177.9
			Design df	= 57
Making left				
turns at				
intersection				
ability before		classification		
BDE	BDE w/ T	BDE w/o	Total	
very poor	4.607	3.617	4.202	
	[2.66,7.864]	[1.408,8.975]	[2.586,6.757]	
poor	17.03	16.96	17	
	[13.12,21.82]	[11.1,25.04]	[13.51,21.17]	
fair	33 67	38 48	35 64	
1411	[28.39,39.39]	[30.21,47.48]	[30.97,40.61]	
	24.00	00.50	21 50	
good	34.02	28.50	31./9	
	[20.72,39.75]	[21.00,37.44]	[2/.29,30.05]	
very good	10.67	12.38	11.37	
	[7.584,14.81]	[7.456,19.87]	[8.488,15.07]	
Total	100	100	100	
Key: column pe	ercentages			
[95% conf	idence interval	ls for column pe	ercentages]	
Pearson:				
Uncorrected	chi2(4)	= 2.9714		
Design-based	F(4.00, 2298.7	72)= 0.4259	P = 0.7900	

Figure 5-80: How do drivers rate their ability to make left turns at intersections after BDE?

Number of strata	= 16	1	Number of obs	= 744
Number of PSUS	= /44	Population size Design df	= 179529.10	
Making left turns at intersection ability after BDE	BDE w/ T	classification BDE w/o	Total	
very poor	.3319 [.05967,1.824]	0	.1959 [.03526,1.081]	
poor	.3832 [.1227,1.19]	1.86 [.5063,6.595]	.9884 [.352,2.744]	
fair	3.779 [2.258,6.259]	7.519 [4.114,13.35]	5.311 [3.53,7.917]	
good	37.23 [32.4,42.33]	36.75 [29.38,44.79]	37.03 [32.82,41.46]	
very good	58.27 [53.13,63.25]	53.88 [45.93,61.63]	56.47 [52.02,60.82]	
Total	100	100	100	
Key: column pe [95% coni	ercentages Eidence intervals	for column per	centages]	
Pearson: Uncorrected Design-based	chi2(4) F(3.81, 2775.03	= 10.3490	P = 0.1107	

Figure 5-81: Logistic regression

skill_turns_before : 0=Not Good 1=Good or Very Good (running logit on estimation sample)									
Survey: Logistic regression									
Number of strata = 16 Number of PSUs = 591			Number o: Populatio Design d: F(5, Prob > F	f obs = on size = f = 571) =	591 139177.97 575 1.52 0.1802				
skill_turn~e	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]			
classifica~n BDE w/ TD	1.000	(base)							
BDE W/O TD gender	0.857	0.192	-0.690	0.491	0.552	1.330			
male	1.000	(base)							
female ageyears	0.580	0.122	-2.593	0.010	0.383	0.876			
16	1.000	(base)							
17	1.104	0.276	0.393	0.694	0.675	1.805			
18	1.065	0.294	0.229	0.819	0.619	1.833			
	1.031	0.284	0.126	0.900	0.643	1.653			

Figure 5-82: Logistic regression

Logistic Regression of rating_turns, controlling for BDE status 1=Good/Very Good > 0 = Not Good (running logit on estimation sample) Survey: Logistic regression							
Number of strata = 16 Number of obs = 1335 Number of PSUs = 1335 Population size = 318707.13 Design df = 1319 F(6, 1314) = 3.41 Prob > F = 0.0024						= 1335 = 318707.13 = 1319 = 3.41 = 0.0024	
rating_turns	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	. Interval]	
after	1.511	0.211	2.961	0.003	1.149	1.986	
classifica~2 BDE w/o TD BDE w/ TD	1.000 1.181	(base) 0.173	1.136	0.256	0.886	1.573	
gender male female	1.000 0.647	(base) 0.090	-3.148	0.002	0.493	0.849	
ageyears 16 17 18 19	1.000 1.089 1.055 1.007	(base) 0.178 0.191 0.185	0.523 0.297 0.036	0.601 0.767 0.972	0.791 0.740 0.702	1.501 1.504 1.444	
_cons	0.827	0.162	-0.968	0.333	0.564	1.215	

Figure 5-83 : Logistic regression

Logistic Regression of rating_turns w/ interaction variable BDE status (running logit on estimation sample)								
Survey: Logistic regression								
Survey. Logistic regression								
Number of strata = 16 Number of obs = 1335								
Number of PSUs	s =	1335		Populati	on size =	318707.13		
				Design d	f =	1319		
l				F(7,	1313) =	3.00		
				Prob > F	=	0.0039		
	.							
		Linearized						
rating_turns	Odds Ratio	Std. Err.	t	P> t	[95% Conf.	Interval]		
after	1.490	0.373	1.589	0.112	0.911	2.436		
classifica~2								
BDE w/o TD	1.000	(base)						
BDE w/ TD	1.165	0.258	0.689	0.491	0.754	1.800		
gender								
male	1.000	(base)						
female	0.647	0.090	-3.147	0.002	0.493	0.849		
2000270								
ageyears 16	1 000	(bace)						
17	1 089	(Dase) 0 178	0 521	0 602	0 790	1 501		
18	1 055	0.191	0.321	0.002	0.750	1 504		
19	1 007	0 185	0 036	0.971	0 702	1 444		
	1.000	0.200	0.000	0.972	0.,02	±		
interaction	1.024	0.305	0.080	0.936	0.571	1.835		
_cons	0.834	0.191	-0.792	0.429	0.532	1.307		

Figure 5-84: How do non-BDE drivers rate their ability to make left turns at intersections?

Number of strata	= 8		Numbe	er of ob	s =	246
Number of PSUs	= 246		Popul	lation s	size =	48020.369
			Desig	yn df	=	238
			<u> </u>			
Making left						
turns at						
intersection						
ability without						
taking BDE	column	lb	ub			
poor	1.262	.2857	5.395			
fair	21.17	15.88	27.63			
good	33.15	26.67	40.34			
very good	44.42	38.09	50.95			
Total	100					
		· · · · · · · · · · · · · · · · · · ·				
Key: column	= column pe	rcentages				
lb	= lower 95%	confidence	bounds for	column	percentag	les
ub	= upper 95%	confidence	bounds for	column	percentag	les

Figure 5-85: Logistic regression

<pre>logistic regression After BDE rating vs NonBDE rating 1=Good/Very Good 0 = Not Go > od (running logit on estimation sample) Survey: Logistic regression</pre>								
Number of strate - 24 Number of obs - 000								
Number of PSUs	= =	990		Populatio	n size	_	227549 53	
Number of 1900	-	550		Design df		=	966	
				F(5,	962)	=	13.95	
				Prob > F	,	=	0.0000	
		Linearized						
rating_turns	Odds Ratio	Std. Err.	t	P> t	[95% Con	f.	Interval]	
after	2.026	0.469	3.050	0.002	1.286		3.191	
ageyears								
16	1.000	(base)						
17	8.944	3.370	5.814	0.000	4.270		18.737	
18	7.647	3.049	5.103	0.000	3.497		16.720	
19	3.676	1.080	4.430	0.000	2.065		6.544	
gender								
male	1.000	(base)						
female	0.546	0.169	-1.954	0.051	0.297		1.002	
_cons	2.114	0.645	2.455	0.014	1.162		3.846	

Figure 5-86: How do young drivers rate their ability to pass other cars safely before BDE?

Number of strata	= 16		Number of obs	= 59
Number of PSUs	= 591		Population size	= 139177.9
			Design df	= 57
Passing other				
cars safely				
ability before		classification		
BDE	BDE w/ T	BDE w/o	Total	
very poor	4.776	8.349	6.238	
	[2.885,7.807]	[4.6,14.68]	[4.201,9.169]	
poor	16.79	18.06	17.31	
	[12.84,21.64]	[12.18,25.94]	[13.82,21.47]	
fair	33.85	32.95	33.48	
	[28.59,39.53]	[25.09,41.89]	[28.91,38.38]	
good	32.85	29.31	31.4	
	[27.6,38.56]	[21.71,38.26]	[26.89,36.28]	
very good	11.74	11.33	11.57	
	[8.465,16.07]	[6.509,19]	[8.625,15.36]	
Total	100	100	100	
Key: column pe	ercentages			
[95% conf	idence interval	s for column pe	ercentages]	
Pearson:				
Uncorrected	chi2(4)	= 3.6841		
Design-based	F(3.97, 2284.3	3)= 0.5410	P = 0.7044	

Figure 5-87: How do young drivers rate their ability to pass other cars safely after BDE?

Number of strata	= 16 = 744		Number of obs	= 74
Number of 1000	/ 11	Design df		= 7
Passing other cars safely				
ability after BDE	BDE w/ T	classification BDE w/c	Total	
very poor	.4028 [.08912,1.801]	.9347 [.1299,6.407]	.6208	
poor	.286 [.04002,2.013]	3.569 [1.384,8.889]	1.631 [.6853,3.831]	
fair	6.445 [4.325,9.502]	9.758 [5.855,15.83]	7.803 [5.644,10.69]	
good	36.46 [31.65,41.56]	42.19 [34.68,50.07]	38.81 [34.58,43.21]	
very good	56.4 [51.25,61.42]	43.55 [35.85,51.58]	51.14 [46.71,55.55]	
Total	100	100	100	
Key: column pe [95% conf	ercentages idence intervals	for column per	centages]	
Pearson: Uncorrected	chi2(4)	= 22.5713		
Design-based	F(3.97, 2891.67)= 3.4882	P = 0.0077	

Figure 5-88: Logistic regression

skill_passing_before : 0=Not Good 1=Good or Very Good								
(running rogic on ebermderon bumpre)								
Survey: Logistic regression								
Number of stra	ata =	16		Number of	obs =	591		
Number of PSUs	3 =	591		Populatio	n size =	139177.97		
				Design df	=	575		
				F(5,	571) =	3.07		
				Prob > F	=	0.0096		
		Linearized						
skill_pass~e	Odds Ratio	Std. Err.	t	P> t	[95% Conf.	Interval]		
classifica~n								
BDE w/ TD	1.000	(base)						
BDE w/o TD	0.806	0.184	-0.944	0.346	0.515	1.262		
gender								
male	1.000	(base)						
female	0.463	0.100	-3.582	0.000	0.303	0.706		
agevears								
16	1.000	(base)						
17	1.077	0.273	0.291	0.771	0.654	1.772		
18	1.463	0.406	1.371	0.171	0.848	2.525		
19	1.210	0.352	0.655	0.513	0.683	2.142		
_cons	0.995	0.241	-0.020	0.984	0.618	1.602		

Figure 5-89: Logistic regression

skill_passing_after : 0=Not Good 1=Good or Very Good									
(running logit	t on estimati	on sample)							
Survey: Logistic regression									
Number of strata = 16 Number of PSUs = 744				Number o Populati Design d F(5, Prob > F	f obs = on size = f = 724) =	744 179529.16 728 1.39 0.2253			
				1100 / 1	_	0.2255			
		Linearized							
skill_pass~r	Odds Ratio	Std. Err.	t	₽> t	[95% Conf.	Intervalj			
classifica~n BDE w/ TD	1.000	(base)							
BDE w/o TD	0.506	0.161	-2.139	0.033	0.271	0.945			
gender male	1.000	(base)							
female	0.801	0.266	-0.669	0.503	0.417	1.536			
ageyears									
16	1.000	(base)							
17	1.263	0.531	0.556	0.579	0.553	2.884			
18	0.882	0.389	-0.284	0.776	0.371	2.098			
19	0.745	0.310	-0.708	0.479	0.329	1.685			
_cons	15.476	6.542	6.480	0.000	6.749	35.488			

Figure 5-90: Logistic regression

Logistic Regre	ession of rat	ing_passing,	control	ling for B	DE status	1=	Good/Very Go
(running logit	t on estimati	on sample)					
(
Survey: Logist	tic regressio	n					
Number of stra	ata =	16		Number o	f obs	=	1335
Number of PSUs	s =	1335		Populati	on size	=	318707.13
				Design d	f	=	1319
				F(6,	1314)	=	5.40
				Prob > F		=	0.0000
		Linearized					
rating_pas~g	Odds Ratio	Std. Err.	t	P> t	[95% Co	nf.	Interval]
after	1.447	0.204	2.627	0.009	1.09	8	1.907
classifica~2							
BDE w/o TD	1.000	(base)					
BDE w/ TD	1.263	0.187	1.576	0.115	0.94	4	1.689
gender							
male	1.000	(base)					
female	0.520	0.073	-4.661	0.000	0.39	5	0.684
ageyears							
16	1.000	(base)					
17	1.053	0.173	0.317	0.751	0.76	4	1.452
18	1.268	0.230	1.312	0.190	0.88	9	1.810
19	1.138	0.210	0.700	0.484	0.79	2	1.635
_cons	0.803	0.157	-1.117	0.264	0.54	7	1.180

Figure 5-91: Logistic regression

Logistic Regression of rating_passing w/ interaction variable BDE status (running logit on estimation sample)								
Survey: Logistic regression								
Number of stra Number of PSUa		Number of Populatic Design df F(7, Prob > F	f obs = on size = f = 1313) = =	1335 318707.13 1319 4.74 0.0000				
rating_pas~g	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]		
after	1.385	0.353	1.278	0.202	0.840	2.283		
classifica~2 BDE w/o TD BDE w/ TD	1.000 1.211	(base) 0.272	0.854	0.393	0.780	1.881		
gender male female	1.000 0.520	(base) 0.073	-4.657	0.000	0.395	0.685		
ageyears 16 17 18 19	1.000 1.052 1.268 1.138	(base) 0.172 0.230 0.210	0.310 1.309 0.701	0.756 0.191 0.483	0.763 0.888 0.792	1.451 1.809 1.636		
interaction _cons	1.077 0.824	0.324 0.189	0.245 -0.843	0.806 0.400	0.597 0.525	1.943 1.293		

Figure 5-92: How do non-BDE drivers rate their ability to pass other cars safely?

Number of strata	=	8		Numb	er of ob	os =	246
Number of PSUs	=	246		Popu	lation «		48020 369
Number of FD05	-	210		Popu	an df	-	10020.000
				Desig	gn ar	=	238
Passing other							
cars safely							
ability without							
taking BDE		column	lb	ub			
				· · · · · · · · · · · · · · · · · · ·			
very poor		.8529	.1178	5.904			
poor		4.885	2.291	10.11			
fair		20.08	14.7	26.8			
dood		28.03	22.01	34.96			
very good		46.16	39.6	52.85			
very good		10.10	55.0	52.05			
mata]		100					
IOCAI		100					
Kow: column	_	golumn ner	contagos				
Key: COlumn	-	lauran 050		1	1		
dl	=	Lower 95%	conridence	pounas for	cornuu	percentag	es
ub	=	upper 95%	confidence	bounds for	column	percentag	es

Figure 5-93: Logistic regression

logistic regr	ession After	BDE rating v	s NonBDE	rating 1=	Good/Verv	Goo	d 0 =	: Not	Go
> od	Cobion Mitter	bbh facing vi	5 NONDDE	racing i-	soou, very	000		. 1100	00
(running logi	t on estimati	on sample)							
(10000000000000000000000000000000000000	e on obermaer	on bampie,							
Survey: Logistic regression									
Number of stra	ata =	24		Number o	f obs	=		990	
Number of PSUs	3 =	990		Populati	on size	=	22754	9.53	
				Design di	£	=		966	
				F(5.	962)	=		8.39	
				Prob > F	,	=	0.	0000	
									-
		Linearized							
rating_pas~g	Odds Ratio	Std. Err.	t	P> t	[95% Cor	nf.	Inter	val]	
									-
after	1.904	0.400	3.069	0.002	1.261	L	2	.875	
ageyears									
16	1.000	(base)							
17	4.596	1.393	5.032	0.000	2.53	5	8	.331	
18	3.410	1.057	3.958	0.000	1.850	5	6	.266	
19	2.761	0.788	3.557	0.000	1.57	7	4	.836	
gender									
male	1.000	(base)							
female	0.775	0.195	-1.013	0.311	0.473	3	1	.270	
							-	0	
cons	1 755	0 498	1 984	0 048	1 0.06	5	3	062	
	1.,55				1.000	-	~		-

Figure 5-94: How do young drivers rate their knowledge of who has right of way before BDE?

Number of strata Number of PSUs	= 16 = 591		Number of obs Population size Design df	= 593 = 139177.9 = 575
Right of way				
ability before BDE	BDE w/ T	classification BDE w/o	Total	
very poor	5.61	4.868	5.307	
	[3.447,9.006]	[2.4,9.624]	[3.548,7.866]	
poor	13.29 [9.91,17.59]	12.4 [7.545,19.72]	12.92 [9.944,16.63]	
fair	30.53 [25.51,36.05]	29.98 [22.57,38.6]	30.3 [25.96,35.03]	
good	35.24 [29.88,40.99]	32.73 [24.86,41.72]	34.21 [29.6,39.15]	
very good	15.34 [11.6,20.02]	20.02 [13.46,28.71]	17.25 [13.63,21.6]	
Total	100	100	100	
Key: column pe [95% cont	ercentages fidence interval	s for column pe	ercentages]	
Pearson:				
Uncorrected Design-based	chi2(4) F(3.97, 2284.2	= 2.3199 28)= 0.3517	P = 0.8418	

Figure 5-95: How do young drivers rate their knowledge of who has right of way after BDE?

Number of strata	= 16	N	Number of obs	= 74
Number of PSUs	= 744	F	Population size Design df	= 179529.1
			-	
Right of way				
ability after		classification		
BDE	BDE w/ T	BDE w/o	Total	
very poor	0	.9255	.3792	
		[.1724,4.81]	[.07098,1.999]	
poor	1.045	0	.6168	
	[.3943,2.74]		[.2331,1.622]	
fair	3.788	7.608	5.353	
	[2.316,6.138]	[4.198,13.4]	[3.589,7.914]	
good	31.76	30.13	31.09	
_	[27.15,36.74]	[23.32,37.94]	[27.11,35.37]	
very good	63.41	61.34	62.56	
1.5	[58.32,68.22]	[53.22,68.87]	[58.11,66.81]	
Total	100	100	100	
Kev: column pe	ercentages			
[95% conf	idence intervals	for column perc	centages]	
Pearson:				
Uncorrected	chi2(4)	= 12.4328		
Design-based	F(3.83, 2790.06)= 1.9313	P = 0.1056	

Figure 5-96: Logistic regression

Logistic Regre	ession of rat	ing_row, cor	ntrolling	for BDE s	status 1=Good	/Very Good 0			
> = Not Good									
(running logit on estimation sample)									
Survey: Logistic regression									
Number of stra	ata =		Number o	of obs =	1335				
Number of PSUs = 1335				Populati	on size =	318707.13			
				Design d	lf =	1319			
				F(6,	1314) =	2.61			
				Prob > H		0.0163			
		Linearized							
rating_row	Odds Ratio	Std. Err.	t	₽> t	[95% Conf.	Interval]			
after	1.385	0.192	2.351	0.019	1.055	1.818			
classifica~2									
BDE w/o TD	1.000	(base)							
BDE w/ TD	0.945	0.137	-0.387	0.699	0.711	1.257			
gender									
male	1.000	(base)							
female	0.884	0.122	-0.894	0.371	0.674	1.159			
ageyears									
16	1.000	(base)							
17	1.108	0.178	0.636	0.525	0.808	1.519			
18	1.597	0.287	2.610	0.009	1.123	2.271			
19	0.925	0.165	-0.438	0.662	0.652	1.313			
_cons	0.977	0.188	-0.121	0.904	0.670	1.424			

Figure 5-97: Logistic regression

Logistic Regression of rating_row w/ interaction variable BDE status								
(running logit	: on estimati	on sample)						
Survey: Logistic regression								
Number of stra	ata =		Number of	obs =	1335			
Number of DSU	Populatio	ngizo -	- 318707 13					
Number of F50	-	1000		Populacio		. 1210		
				Design at	1010)	. 1319		
				F(/,	1313) =	2.32		
				Prob > F	=	0.0236		
<u> </u>		T /				· · · · · · · · · · · · · · · · · · ·		
	011 5 1	Linearized		5.1.1	[050 g 5			
rating_row	Odds Ratio	Sta. Err.	t	₽> t	[95% Conr.	Intervalj		
	1 240		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			0.101		
aiter	1.340	0.333	1.1/8	0.239	0.823	2.184		
alassifica~2								
	1 000	(baga)						
BDE W/O ID	1.000	(Dase)	0 000	0 600	0 500	1 404		
BDE W/ TD	0.91/	0.199	-0.399	0.690	0.599	1.404		
_								
gender								
male	1.000	(base)						
female	0.884	0.122	-0.890	0.374	0.674	1.160		
ageyears								
16	1.000	(base)						
17	1.107	0.178	0.631	0.528	0.807	1.518		
18	1 597	0 287	2 608	0 009	1 1 2 3	2 271		
10	0.025	0.267	-0.426	0.662	0 652	1 212		
19	0.925	0.105	-0.430	0.005	0.052	1.313		
interaction	1 057	0 312	0 187	0 852	0 592	1 886		
Inceraction	1.057	0.312	0.107	0.002	0.552	1 540		
_cons	0.995	0.222	-0.023	0.982	0.642	1.542		

Figure 5-98: How do non-BDE drivers rate their knowledge of who has right of way?

Number of strata	=	8	8 Numbe		er of ok	s =	246
Number of PSUs	=	246		Popu	lation s	size =	48020.369
				Design df		=	238
·····							
Right of way							
ability without							
taking BDE		column	lb	ub			
poor		5526	07659	3,872			
fair		22 75	16 97	20.8			
1a11		22.75	10.97	29.0			
good		29.87	23.87	30.00			
very good		46.82	39.81	53.96			
Total		100					
Key: column	=	column per	rcentages				
lb	=	lower 95%	confidence	bounds for	column	percentag	es
ub	=	upper 95%	confidence	bounds for	column	percentag	es

Figure 5-99: Logistic regression

logistic regre > od (running logit	ession After t on estimati	BDE rating vs on sample) n	NonBDE	rating 1	=Good/Very	Goo	od 0 = 1	Not Go
burvey: hogibt	ic regressio							
Number of stra	ata =	24		Number	of obs	=		990
Number of PSUs	3 =	990		Populat	ion size	=	227549	.53
				Design	df	=		966
				F(5,	962)	=	8	.55
				Prob >	F	=	0.0	000
		Linearized						
rating_row	Odds Ratio	Std. Err.	t	P> t	[95% Co:	nf.	Interv	al]
after	3.009	0.789	4.201	0.000	1.79	9	5.	035
ageyears								
16	1.000	(base)						
17	4.182	1.681	3.559	0.000	1.90	0	9.	205
18	3.323	1.294	3.084	0.002	1.54	8	7.	135
19	1.398	0.448	1.044	0.297	0.74	5	2.	623
gender								
male	1.000	(base)				_	-	
female	1.180	0.334	0.584	0.559	0.67	7	2.	056
_cons	1.967	0.591	2.253	0.024	1.09	1	3.	547

Figure 5-100: How do young drivers rate their vehicle handling abilities before BDE?

Number of strata Number of PSUs	= 16 = 591		Number of obs Population size Design df	= 59 = 139177.9 = 57
			2001511 41	57.
Vehilce handling				
ability before BDE	BDE w/ T	classification BDE w/o	Total	
very poor	2.713 [1.348,5.387]	1.329 [.2885,5.901]	2.147 [1.122,4.07]	
poor	9.458 [6.564,13.44]	14.26 [9.073,21.72]	11.42 [8.554,15.1]	
fair	35.02 [29.65,40.81]	30.22 [22.74,38.93]	33.06 [28.54,37.91]	
good	35 [29.69,40.72]	39.07 [30.73,48.11]	36.67 [31.96,41.64]	
very good	17.8 [13.88,22.54]	15.11 [9.711,22.76]	16.7 [13.34,20.71]	
Total	100	100	100	
Key: column pe [95% con:	ercentages fidence interval	s for column pe	ercentages]	
Pearson:				
Uncorrected Design-based	chi2(4) F(3.99, 2296.0	= 6.4231 (8)= 0.9486	P = 0.4347	

Figure 5-101: How do young drivers rate their vehicle handling abilities after BDE?

Number of strata	= 16	1	Number of obs	= 7
Number of PSUs	= 744	I	Population size Design df	= 179529. = 7
Vohilao				
handling				
ability after		classification		
BDE	BDE w/ T	BDE w/o	Total	
very poor	.286	0	.1688	
	[.04002,2.013]		[.02365,1.194]	
poor	0	.9255	.3792	
		[.1724,4.81]	[.07098,1.999]	
fair	1.68	5.453	3.226	
	[.736,3.788]	[2.675,10.8]	[1.859,5.541]	
good	31.25	33.35	32.11	
	[26.64,36.26]	[26.29,41.26]	[28.06,36.44]	
very good	66.79	60.27	64.12	
	[61.74,71.48]	[52.44,67.6]	[59.76,68.25]	
Total	100	100	100	
	L			
Key: column pe [95% conf	rcentages idence intervals	for column perc	centages]	
		-	-	
Pearson:	chi2(4)	= 14 3202		
Design-based	F(3.88, 2825.84)= 2.1779	P = 0.0711	

Figure 5-102: Logistic regression

Logistic Regre > od 0 = Not 0 (running logit	ession of rat Good t on estimati	ing_handling on sample)	, contro	lling for	BDE status	1=	=Good/Very G
Survey: Logist	tic regressio	n					
Number of strata = 16 Number of PSUs = 1335				Number o Populati Design d F(6, Prob > F	f obs on size f 1314)	= = = =	1335 318707.13 1319 3.90 0.0007
rating_han~g	Odds Ratio	Linearized Std. Err.	t	₽> t	[95% Con	f.	Interval]
after	1.449	0.203	2.642	0.008	1.100		1.908
classifica~2 BDE w/o TD BDE w/ TD	1.000 0.919	(base) 0.134	-0.579	0.563	0.690		1.224
gender male female	1.000 0.720	(base) 0.101	-2.331	0.020	0.547		0.949
ageyears 16 17 18	1.000 0.958 0.845	(base) 0.161 0.153	-0.258	0.797 0.354	0.689		1.331
19 _cons	0.581	0.107	-2.938 2.929	0.003	0.405		0.835

162 The knowledge source for safe driving

Figure 5-103: Logistic regression

Logistic Regression of rating_handling w/ interaction variable BDE status (running logit on estimation sample)								
Survey: Logistic regression								
Number of stra		Number o:	f obs	= 1335				
Number of PSUs	s =	1335		Populatio	on size	= 318707.13		
				Design d:	E :	= 1319		
				F(7,	1313)	= 3.46		
				Prob > F		= 0.0011		
	.							
		Linearized						
rating_han~g	Odds Ratio	Std. Err.	t	₽> t	[95% Conf	. Interval]		
after	1.377	0.344	1.279	0.201	0.843	2.248		
classifica~2								
BDE w/o TD	1.000	(base)						
BDE w/ TD	0.876	0.191	-0.606	0.545	0.572	1.343		
gender								
male	1.000	(base)						
female	0.721	0.101	-2.325	0.020	0.547	0.950		
ageyears								
16	1.000	(base)						
17	0.957	0.161	-0.265	0.791	0.688	1.330		
18	0.845	0.153	-0.931	0.352	0.592	1.206		
19	0.581	0.107	-2.935	0.003	0.405	0.835		
interaction	1.090	0.325	0.290	0.772	0.608	1.956		
_cons	1.836	0.418	2.668	0.008	1.174	2.869		

Figure 5-104: How do non-BDE drivers rate their vehicle handling abilities?

Number of strata	=	8		Num	ber of o	bs =	246
Number of PSUs	=	246		Pop	ulation	size =	48020.369
				Des	ign df	=	238
					5		
Vehilce							
bandling							
ability without							
taking BDE	(column	lb	u	b		
					_		
poor		.8529	.1178	5.90	4		
fair		11.27	7.082	17.4	6		
good		31.43	25.13	38.	5		
very good		56 45	49 64	63 0	2		
var, 300a		50.15	19101	00.0	-		
ma ha l		100					
IOLAI		100					
					_		
Key: column	= C(olumn pei	centages				
lb	= 10	ower 95%	confidence	bounds fo	r column	percenta	ges
ub	= u]	pper 95%	confidence	bounds fo	r column	percenta	ges

Figure 5-105: Logistic regression

logistic regre > od	ession After	BDE rating v	s NonBDE	rating 1=	Good/Very	Goo	od 0 =	= Not	Go
(running logit	t on estimati	on sample)							
Survey: Logist	tic regressio	n							
Number of stra	ata =	24		Number o	f obs	=		990	
Number of PSUs	s =	990		Populati	on size	=	22754	19.53	
				Design d	f	=		966	
				F(5,	962)	=		5.42	
				Prob > F		=	0	.0001	
									-
		Linearized							
rating_han~g	Odds Ratio	Std. Err.	t	₽> t	[95% Coi	nf.	Inte	[val]	_
after	1.963	0.620	2.136	0.033	1.05	5	1	3.646	
agevears									
16	1.000	(base)							
17	18.997	14.112	3.964	0.000	4.42	2	81	L.617	
18	5.015	2.609	3.100	0.002	1.80	7	13	3.920	
19	1.582	0.563	1.289	0.198	0.78	7	3	3.182	
gender									
male	1.000	(base)							
female	0.746	0.294	-0.743	0.458	0.34	5	-	L.616	
_cons	5.009	1.905	4.237	0.000	2.37	5	10).565	

Figure 5-106: How often do young drivers speed while driving during G1?

Number of str	rata = 24		Number of obs	= 974
Number of PSU	Js = 974		Population size	= 223239.08
			Design df	= 950
How often				
do/did you				
speed		classif	ication	
during G1?	BDE w/ TD	BDE w/o TD	non-BDE	Total
Never	30.13	39.95	44.34	36.32
	[25.61,35.07]	[32.37,48.04]	[37.2,51.72]	[32.7,40.1]
Once	18.44	23.42	22.69	20.95
	[14.87,22.64]	[17.08,31.22]	[16.95,29.68]	[17.92,24.34]
Sometimes	29.2	20.35	15.3	23.38
	[24.68,34.16]	[14.52,27.76]	[10.87,21.11]	[20.29,26.79]
Often	15.63	11.87	10.91	13.41
	[12.18,19.84]	[7.568,18.13]	[7.576,15.47]	[11.04,16.21]
Very Often	6.606	4.416	6.757	5.934
	[4.478,9.642]	[2.219,8.597]	[4.24,10.6]	[4.474,7.83]
Total	100	100	100	100
Key: colum	nn percentages			
[95%	confidence interva	ls for column pe	rcentages]	
Pearson:				
Uncorrect	ed chi2(8)	= 30.7421		
Design-ba	ased F(7.45, 7073.	35)= 2.6733	P = 0.0077	

Figure 5-107: How often do young drivers speed while driving during G2?

Number of str	ata = 20		Number of obs	= 853
Number of PSU	s = 853		Population size	= 199090.43
			Design df	= 833
·····				· · · · · · · · · · · · · · · · · · ·
How often				
do/did you				
speed		classif	ication	
during G2?	BDE w/ TD	BDE w/o TD	non-BDE	Total
Never	13.82	16.39	24.33	16.17
	[10.7,17.68]	[11,23.72]	[17.94,32.1]	[13.4,19.39]
Once	11.17	20.7	15.97	15.11
	[8.309,14.86]	[14.67,28.39]	[10.84,22.89]	[12.34,18.37]
Sometimes	25.65	28.05	20.97	25.82
	[21.44,30.38]	[21,36.37]	[15.23,28.16]	[22.36,29.61]
Often	25.77	15.79	15.55	20.92
	[21.45,30.61]	[10.64,22.81]	[10.58,22.27]	[17.85,24.36]
Very Often	23.58	19.07	23.19	21.98
-	[19.47,28.26]	[13.18,26.78]	[17.17,30.54]	[18.78,25.55]
Total	100	100	100	100
Key: colum	n percentages			
[95%	confidence interva	ls for column pe	ercentages]	
Pearson:				
Uncorrect	ed chi2(8)	= 30.7309		
Design-ba	sed F(7.13, 5937.	55)= 2.8310	P = 0.0057	

Figure 5-108: Logistic regression

Survey: Logistic regression Number of strata = 24 Number of PSUs = 974 Number of PSUs = 974 Number of PSUs = 974 Number of PSUs = 974 Number of PSUs = 974 prob > F = 0.0177 prob > F = 0	<pre>speeding_G1_x : 0=Never 1=At least once (running logit on estimation sample)</pre>							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Survey: Logis	tic regressio	'n					
speeding-1_x Odds Ratio Linearized Std. Err. $p > t $ [95% Conf. Interval] classifica-n BDE w/ TD 1.000 (base) BDE w/ TD 0.645 0.132 -2.147 0.032 0.433 0.963 gender male 1.000 (base) 0.100 -2.795 0.005 0.417 0.858 gender male 1.000 (base) 0.244 0.867 0.387 0.622 1.202 ageyears 16 1.000 (base) 1.049 2.768 18 1.704 0.421 2.157 0.031 1.049 2.768 19 1.160 0.281 0.611 0.541 0.721 1.865 _cons 1.892 0.445 2.713 0.007 1.193 3.001 (running logit on estimation sample) Survey: Logistic regression Number of obs = 974 Number of PSUS = 974 Population size = 223239.08 Design df = 950 F(cot, 945)<	Number of stra Number of PSUa	ata = s =	24 974		Number of Populatic Design df F(6, Prob > F	obs = n size = 945) =	974 223239.08 950 2.57 0.0177	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	speeding~1_x	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]	
BDE w/ TD 1.000 (base) BDE w/o TD 0.645 0.132 -2.147 0.032 0.433 0.963 gender 0.598 0.110 -2.795 0.005 0.417 0.858 gender 1.000 (base) 0.865 0.145 -0.866 0.387 0.622 1.202 ageyears 16 1.000 (base) 1 1.223 0.284 0.867 0.386 0.775 1.928 18 1.704 0.421 2.157 0.031 1.049 2.768 19 1.160 0.281 0.611 0.541 0.721 1.865 _cons 1.892 0.445 2.713 0.007 1.193 3.001 (running logit on estimation sample) Survey: Logistic regression Number of bos = 974 Population size = 223239.08 Design df = 950 F(6, 945) = 2.57 Prob > F 0.0177 reading-1_x Odds Ratio Std. Err. t P> t [95% Conf. Interval] Classifica-n BDE w/ TD 1.549 0.316 2.147 0.032 1.038 2.312 gender male 1.000 (base							<u> </u>	
BDE w/o TD non-EDE 0.645 0.132 -2.147 0.032 0.433 0.963 gender male 0.598 0.110 -2.795 0.005 0.417 0.858 gender male 1.000 (base) 0.665 0.145 -0.866 0.387 0.622 1.202 ageyears 16 1.000 (base) 1.71 1.223 0.284 0.867 0.386 0.775 1.928 18 1.704 0.421 2.157 0.031 1.049 2.768 19 1.160 0.281 0.611 0.541 0.721 1.865 _cons 1.892 0.445 2.713 0.007 1.193 3.001 (running logit on estimation sample) Survey: Logistic regression Number of obs = 974 Number of PSUs = 974 Degign df = 955 f(6, 945) 2.57 Prob > F = 0.0177 gender 1.549 0.316 2.147 0.032 1	BDE w/ TD	1.000	(base)					
non-BDE 0.598 0.110 -2.795 0.005 0.417 0.858 gender male 1.000 (base)	BDE w/o TD	0.645	0.132	-2.147	0.032	0.433	0.963	
gender male female 1.000 (base) 0.865 0.145 -0.866 0.387 0.622 1.202 ageyears 16 1.000 (base) 17 1.223 0.284 0.867 0.386 0.775 1.928 18 1.704 0.421 2.157 0.031 1.049 2.768 19 1.160 0.281 0.611 0.541 0.721 1.865 _cons 1.892 0.445 2.713 0.007 1.193 3.001 (running logit on estimation sample) survey: Logistic regression Number of obs = 974 Number of PSUs = 974 Number of obs = 974 Speeding-1_x Odds Ratio Std. Err. t P> t [95% Conf. Interval] classifica~n BDE w/ or D 1.549 0.316 2.147 0.032 1.038 2.312 BDE w/ or D 1.000 (base) 1.423 0.284 0.865 0.726 0.603 1.423 gender male 1.000 (base) 0.421 <	non-BDE	0.598	0.110	-2.795	0.005	0.417	0.858	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	gender male female	1.000 0.865	(base) 0.145	-0.866	0.387	0.622	1.202	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	agovoarg							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ageyears 16	1 000	(bace)					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17	1 223	(Dase) 0 284	0 867	0 386	0 775	1 928	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19	1 704	0.204	2 157	0.031	1 0/9	2 769	
	19	1.160	0.421	0.611	0.541	0.721	1.865	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
<pre>(running logit on estimation sample) Survey: Logistic regression Number of strata = 24 Number of PSUs = 974 Speeding-1_x Odds Ratio Std. Err. t P> t [95% Conf. Interval] classifica-n BDE w/ TD 1.549 0.316 2.147 0.032 1.038 2.312 BDE w/ TD 1.549 0.316 2.147 0.032 1.038 2.312 BDE w/ TD 1.000 (base) non-BDE 0.926 0.203 -0.350 0.726 0.603 1.423 gender male 1.000 (base) female 0.865 0.145 -0.866 0.387 0.622 1.202 ageyears 16 1.000 (base) 17 1.223 0.284 0.867 0.386 0.775 1.928 18 1.704 0.421 2.157 0.031 1.049 2.768 19 1.160 0.281 0.611 0.541 0.721 1.865 cons 1.221 0.321 0.760 0.448 0.729 2.047</pre>		1.892	0.445	2.713	0.007	1.193	3.001	
Survey: Logistic regression Number of strata = 24 Number of PSUs = 974 Population size = 223239.08 Design df = 950 F(-6, -945) = 2.57 Prob > F = 0.0177 speeding~1_x Odds Ratio Std. Err. t $P> t $ [95% Conf. Interval] classifica~n BDE w/ TD 1.549 0.316 2.147 0.032 1.038 2.312 DBDE w/ TD 1.000 (base) non-BDE 0.926 0.203 -0.350 0.726 0.603 1.423 gender male 1.000 (base) female 0.865 0.145 -0.866 0.387 0.622 1.202 ageyears 16 1.000 (base) 17 1.223 0.284 0.867 0.386 0.775 1.928 18 1.704 0.421 2.157 0.031 1.049 2.768 19 1.160 0.281 0.611 0.541 0.721 1.865 cons 1.221 0.321 0.760 0.448 0.729 2.047	(running logi	t on estimati	on sample)					
Number of strata = 24 Number of PSUs = 974 Number of PSUs = 974 Number of PSUs = 974 Population size = 223239.08 Design df = 950 F(-6, -945) = 2.57 Prob > F = 0.0177 speeding~1_x Odds Ratio Std. Err. t P> t [95% Conf. Interval] classifica-n BDE w/ TD 1.549 0.316 2.147 0.032 1.038 2.312 BDE w/ TD 1.000 (base) non-BDE 0.926 0.203 -0.350 0.726 0.603 1.423 gender male 1.000 (base) female 0.865 0.145 -0.866 0.387 0.622 1.202 ageyears 16 1.000 (base) 17 1.223 0.284 0.867 0.386 0.775 1.928 18 1.704 0.421 2.157 0.031 1.049 2.768 19 1.160 0.281 0.611 0.541 0.721 1.865 cons 1.221 0.321 0.760 0.448 0.729 2.047	Survey: Logis	tic regressio	n					
Number of PSUs = 974 Population size = 974 Number of PSUs = 974 Population size = 223239.08 Design df = 950 F(6,945) = 2.57 Prob > F = 0.0177 Image: speeding~1_x Odds Ratio Std. Err. t P> t [95% Conf. Interval] classifica~n BDE w/ TD 1.549 0.316 2.147 0.032 1.038 2.312 BDE w/ TD 1.549 0.316 2.147 0.032 1.038 2.312 BDE w/ TD 1.000 (base) 0.926 0.203 -0.350 0.726 0.603 1.423 gender male 1.000 (base) 0.622 1.202 ageyears 16 1.223 0.284 0.867 0.386 0.775 1.928 18 1.704 0.421 2.157 0.031 1.049 2.768 19 1.160 0.281 0.611 0.541 0.729 2.047	Number of str	ata -	24		Number of	oba -	074	
Number of FS0S- $9/4$ Population size- 223235.00 Design df=950F(6,945)=2.57Prob > F=0.0177Odds RatioStd. Err.tProb > F=0.0177classifica~n1.5490.3162.147BDE w/ TD1.5490.3162.147BDE w/ TD1.000(base)non-BDE0.9260.203-0.3500.7260.603gender1.000male1.000female0.8650.145-0.8660.3870.6221.202ageyears161.2230.2840.867191.1600.2810.6110.5410.7211.865	Number of DSU	ala –	074		Dopulatio	ous =	222220 08	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NUMBEL OI PSU	5 -	9/4		Population	- size -	223239.00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $. = 04E) =	950	
speeding~1_x Odds Ratio Std. Err. t P> t [95% Conf. Interval] classifica~n BDE w/ TD DE w/ TD 1.549 0.316 2.147 0.032 1.038 2.312 DBE w/ TD DE w/ TD 1.000 (base) 0.926 0.203 -0.350 0.726 0.603 1.423 gender male 1.000 (base) 0.865 0.145 -0.866 0.387 0.622 1.202 ageyears 16 1.000 (base) 0.284 0.867 0.386 0.775 1.928 18 1.704 0.421 2.157 0.031 1.049 2.768 19 1.160 0.281 0.611 0.541 0.721 1.865					F(0, Prob > F	=	0.0177	
speeding~1_x Linearized Odds Ratio Linearized Std. Err. P> t [95% Conf. Interval] classifica~n BDE w/ TD BDE w/ TD non-BDE 1.549 0.316 2.147 0.032 1.038 2.312 gender male 1.000 (base) 0.926 0.203 -0.350 0.726 0.603 1.423 gender male 1.000 (base) 0.622 1.202 ageyears 16 1.000 (base) 0.284 0.867 0.386 0.775 1.928 18 1.704 0.421 2.157 0.031 1.049 2.768 19 1.160 0.281 0.611 0.541 0.721 1.865								
classifica-n 1.549 0.316 2.147 0.032 1.038 2.312 BDE w/ o TD 1.000 (base) 0.926 0.203 -0.350 0.726 0.603 1.423 gender male 1.000 (base) 0.662 1.202 ageyears 16 1.000 (base) 0.622 1.202 ageyears 16 1.000 (base) 0.284 0.867 0.386 0.775 1.928 18 1.704 0.421 2.157 0.031 1.049 2.768 19 1.160 0.281 0.611 0.541 0.721 1.865	speeding~1_x	Odds Ratio	Linearized Std. Err.	t	₽> t	[95% Conf.	Interval]	
BDE w/ TD 1.549 0.316 2.147 0.032 1.038 2.312 BDE w/o TD 1.000 (base) 0.926 0.203 -0.350 0.726 0.603 1.423 gender male 1.000 (base) 0.662 1.202 ageyears 16 1.000 (base) 0.622 1.202 ageyears 16 1.000 (base) 0.203 0.203 0.386 0.775 1.928 18 1.704 0.421 2.157 0.031 1.049 2.768 19 1.160 0.281 0.611 0.541 0.721 1.865	classifica~n							
BDE w/o TD non-BDE 1.000 (base) gender male 0.926 0.203 -0.350 0.726 0.603 1.423 gender male 1.000 (base) female 0.865 0.145 -0.866 0.387 0.622 1.202 ageyears 16 1.000 (base) 17 1.223 0.284 0.867 0.386 0.775 1.928 18 1.704 0.421 2.157 0.031 1.049 2.768 19 1.160 0.281 0.611 0.541 0.721 1.865 cons 1.221 0.321 0.760 0.448 0.729 2.047	BDE w/ TD	1.549	0.316	2.147	0.032	1.038	2.312	
non-BDE 0.926 0.203 -0.350 0.726 0.603 1.423 gender male 1.000 (base) 0.602 1.202 ageyears 16 1.000 (base) 0.622 1.202 ageyears 16 1.000 (base) 0.284 0.867 0.386 0.775 1.928 18 1.704 0.421 2.157 0.031 1.049 2.768 19 1.160 0.281 0.611 0.541 0.721 1.865 cons 1.221 0.321 0.760 0.448 0.729 2.047	BDE w/o TD	1.000	(base)					
gender male 1.000 (base) female 0.865 0.145 -0.866 0.387 0.622 1.202 ageyears 0.865 0.145 -0.866 0.387 0.622 1.202 ageyears 16 17 1.223 0.284 0.867 0.386 0.775 1.928 18 1.704 0.421 2.157 0.031 1.049 2.768 19 1.160 0.281 0.611 0.541 0.721 1.865 _cons 1.221 0.321 0.760 0.448 0.729 2.047	non-BDE	0.926	0.203	-0.350	0.726	0.603	1.423	
male 1.000 (base) female 0.865 0.145 -0.866 0.387 0.622 1.202 ageyears 16 17 1.223 0.284 0.867 0.386 0.775 1.928 18 1.704 0.421 2.157 0.031 1.049 2.768 19 1.160 0.281 0.611 0.541 0.721 1.865 _cons 1.221 0.321 0.760 0.448 0.729 2.047	gender							
female 0.865 0.145 -0.866 0.387 0.622 1.202 ageyears 16 1.000 (base) 17 1.223 0.284 0.867 0.386 0.775 1.928 18 1.704 0.421 2.157 0.031 1.049 2.768 19 1.160 0.281 0.611 0.541 0.721 1.865	male	1.000	(base)					
ageyears 16 1.000 (base) 17 1.223 0.284 0.867 0.386 0.775 1.928 18 1.704 0.421 2.157 0.031 1.049 2.768 19 1.160 0.281 0.611 0.541 0.721 1.865 cons 1.221 0.321 0.760 0.448 0.729 2.047	female	0.865	0.145	-0.866	0.387	0.622	1.202	
ageyears 16 1.000 (base) 17 1.223 0.284 0.867 0.386 0.775 1.928 18 1.704 0.421 2.157 0.031 1.049 2.768 19 1.160 0.281 0.611 0.541 0.721 1.865 cons 1.221 0.321 0.760 0.448 0.729 2.047	2000275							
10 1.000 (Base) 17 1.223 0.284 0.867 0.386 0.775 1.928 18 1.704 0.421 2.157 0.031 1.049 2.768 19 1.160 0.281 0.611 0.541 0.721 1.865	ayeyears	1 000	(base)					
17 1.223 0.264 0.867 0.386 0.775 1.928 18 1.704 0.421 2.157 0.031 1.049 2.768 19 1.160 0.281 0.611 0.541 0.721 1.865	17	1.000	(Dase)	0 067	0 295	0 775	1 0 0 0	
10 1.704 0.421 2.157 0.031 1.049 2.768 19 1.160 0.281 0.611 0.541 0.721 1.865 _cons 1.221 0.321 0.760 0.448 0.729 2.047	1 /	1 704	0.284	0.00/ 0 157	0.300	0.//5	1.920 0.760	
_cons 1.221 0.321 0.760 0.448 0.729 2.047	10 10	1 160	U.421 0 281	∠.⊥5/ 0 611	0.031 0.541	1.049	∠./08 1 865	
_cons 1.221 0.321 0.760 0.448 0.729 2.047	1.2	1.100	0.201	0.011	0.511	0./21	1.003	
	_cons	1.221	0.321	0.760	0.448	0.729	2.047	

Figure 5-109: Logistic regression

speeding_G2_x : 0=Never 1=At least once (running logit on estimation sample)								
Survey: Logistic regression								
Number of stra	ata =	20		Number of	obs =	= 853		
Number of PSU:	s =	853		Populatio	on size =	199090.43		
				Design df	=	= 833		
				F(6.	828) =	1.82		
				Prob > F	===	0.0932		
		Linearized			<u> </u>	<u> </u>		
speeding~2_x	Odds Ratio	Std. Err.	t	P> t	[95% Conf.	Interval]		
classifica~n								
BDE w/ TD	1.000	(base)						
BDE w/o TD	0.769	0.218	-0.923	0.356	0.441	1.343		
non-BDE	0.473	0.122	-2.901	0.004	0.285	0.785		
gender								
male	1.000	(base)						
female	1.132	0.259	0.540	0.589	0.722	1.774		
ageyears								
16	1.000	(base)						
17	1.576	0.475	1.511	0.131	0.873	2.848		
18	2.023	0.649	2.195	0.028	1.077	3.797		
19	1.692	0.565	1.574	0.116	0.878	3.260		
_cons	3.475	0.893	4.848	0.000	2.099	5.754		
(running logi	t on estimati	on sample)						
Survey: Logist	tic regressic	'n						
Number of str	ata -	20		Number of	oba -	- 952		
Number of Dell	ala -	20		Dopulatio		- 100000 42		
Number of PSO:	5 -	000		Populatic Designation	ni size -	- 199090.43		
					=	- 033		
				F(0, Prob > F	020) =	= 1.82 = 0.0932		
	•••••••••••							
		Linearized						
speeding~2_x	Odds Ratio	Std. Err.	t	P> t	[95% Conf.	Interval]		
classifica~n								
BDE w/ TD	1.300	0.369	0.923	0.356	0.745	2.268		
BDE w/o TD	1.000	(base)						
non-BDE	0.614	0.190	-1.578	0.115	0.335	1.126		
gender								
gender	1 000	(base)						
famala	1.000	(Dase)	0 540	0 5 0 0	0 700	1 994		
Iemale	1.132	0.259	0.540	0.589	0.722	1.//4		
ageyears								
16	1.000	(base)						
17	1.576	0.475	1.511	0.131	0.873	2.848		
18	2.023	0.649	2.195	0.028	1.077	3.797		
19	1.692	0.565	1.574	0.116	0.878	3.260		
_cons	2.674	1.023	2.570	0.010	1.262	5.667		

Figure 5-110: How often do G1 drivers send hand-held messages while driving?

Number of str	rata = 24		Number of obs	= 974
Number of PS	JS = 974		Population size Design df	= 223239.08 = 950
How often do/did you send hand-held		-1		
during G1?	BDE w/ TD	BDE w/o TD	non-BDE	Total
Never	84.79 [80.55,88.24]	93.44 [88.13,96.47]	90.3 [86.21,93.27]	88.75 [86.21,90.87]
Once	7.182 [4.861,10.49]	.755 [.2563,2.203]	3.981 [2.279,6.866]	4.431 [3.228,6.054]
Sometimes	5.671 [3.612,8.795]	5.373 [2.586,10.83]	4.313 [2.376,7.707]	5.285 [3.752,7.395]
Often	1.614 [.6514,3.944]	.3285 [.05503,1.935]	1.409 [.484,4.029]	1.157 [.5922,2.247]
Very Often	.7419 [.2357,2.309]	.1061 [.01489,.7517]	0	.3789 [.1317,1.085]
Total	100	100	100	100
Key: colum [95%	nn percentages confidence interva	als for column pe	ercentages]	
Pearson: Uncorrect Design-ba	ted chi2(8) ased F(6.62, 6284	= 25.2854 .91)= 3.1561	P = 0.0031	

Figure 5-111: How often do G1 drivers send hands-free messages while driving?

Number of strata	= 24	P	Number of obs	= 974
Number of PSUs	= 974	I	Population size	
		I	Design df	= 950
How often	<u>.</u>			
do/did you send				
hands-free				
messages during		classif	fication	
G1?	BDE w/ T	BDE w/o	non-BDE	Total
Never	91.25	94.87	92.95	92.78
	[87.66,93.87]	[89.12,97.66]	[88.43,95.79]	[90.43,94.58]
Once	3.285	2.391	2.544	2.839
	[1.842,5.791]	[.7618,7.247]	[1.004,6.294]	[1.77,4.523]
Sometimes	3.249	2.708	2.831	2.986
	[1.737,5.999]	[.869,8.118]	[1.202,6.524]	[1.832,4.831]
Often	1.585	0	1.404	1.036
	[.6817,3.64]		[.5136,3.781]	[.5331,2.005]
Very Often	.6318	.03161	.2719	.3619
-	[.1728,2.282]	[.00444,.2247]	[.03809,1.913]	[.1207,1.08]
Total	100	100	100	100
Key: column pe	ercentages			
[95% conf	idence intervals	for column perc	centages]	
Pearson:				
Uncorrected	chi2(8)	= 7.8021		
Design-based	F(5.99, 5694.88)= 0.7810	P = 0.5846	

Figure 5-112: Logistic regression

hand_hei (running logi)	ld_texts_G1_x t on estimati	: 0=Never 1 on sample)	=At least	once		
Survey: Logist	cic regressio	n				
Number of stra Number of PSU	ata = 5 =	24 974		Number of Populatio Design df F(6, Prob > F	obs = n size = 945) =	974 223239.08 950 6.08 0.0000
hand_held	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
classifica~n						
BDE w/ TD	1.000	(base)				
BDE w/o TD	0.353	0.128	-2.875	0.004	0.174	0.719
non-BDE	0.756	0.215	-0.985	0.325	0.433	1 320
HOIL PDE	0.750	0.215	0.905	0.525	0.155	1.520
gender						
gender	1 000	(bace)				
fomalo	1.000	(Dase)	1 005	0 046	0 270	0 002
Temate	0.000	0.152	-1.995	0.046	0.370	0.992
ageyears						
16	1.000	(base)				
17	2.678	1.047	2.520	0.012	1.244	5.766
18	5.139	1.891	4.450	0.000	2.497	10.579
19	4.241	1.600	3.828	0.000	2.022	8.894
_cons	0.062	0.023	-7.523	0.000	0.030	0.128
(rupping logit	L on ogtimati					
(fullining logi	L OII ESCIMACI	on sampie)				
Survey: Logist	cic regressio	n				
Number of str	ata -	24		Number of	oba -	07/
Number of DOL	ala -	24		Number of		222220 00
Nulliber of PSU	5 =	974		Populatio	n size =	223239.08
				Design di	=	950
				F(6,	945) =	6.08
				Prob > F	=	0.0000
		Linearized				
hand_held	Odds Ratio	Std. Err.	t	P> t	[95% Conf.	Interval]
						· · · · · · · · · · · · · · · · · · ·
classifica~n						
BDE w/ TD	2.832	1.025	2.875	0.004	1.392	5.762
BDE w/o TD	1.000	(base)				
non-BDE	2.141	0.885	1.841	0.066	0.951	4.821
gender						
male	1.000	(base)				
female	0 606	0 152	-1 995	0 046	0 370	0 992
remarc	0.000	0.152	1.775	5.010	0.570	0.772
20000275						
ayeyears	1 000	(bees)				
10	1.000	(base)		0.01-		
17	2.678	1.047	2.520	0.012	1.244	5.766
18	5.139	1.891	4.450	0.000	2.497	10.579
19	4.241	1.600	3.828	0.000	2.022	8.894
cons	0.022	0.010	-8.029	0.000	0.009	0.056

Figure 5-113: How often do G2 drivers send hand-held messages while driving?

Number of str	ata = 20		Number of obs	= 853
Number of PSU	s = 853		Population size Design df	= 199090.43 = 833
How often do/did you				
send				
hand-held		alogaif	iastion	
during G2?	BDE w/ TD	BDE w/o TD	non-BDE	Total
Never	61.53	70.66	65.78	65.26
	[56.54,66.29]	[62.49,77.69]	[57.69,73.04]	[61.37,68.95]
Once	10.56	12.88	11.29	11.46
	[7.716,14.28]	[8.277,19.51]	[7.221,17.23]	[9.078,14.36]
Sometimes	15.92	7.466	12.82	12.59
	[12.41,20.19]	[4.131,13.12]	[8.254,19.38]	[10.2,15.44]
Often	7.98	4.631	4.73	6.377
	[5.484,11.47]	[1.963,10.53]	[2.21,9.838]	[4.579,8.816]
Very Often	4.012	4.357	5.379	4.322
	[2.335,6.809]	[1.934,9.521]	[2.618,10.73]	[2.895,6.405]
Total	100	100	100	100
Key: column [95%	n percentages confidence interva	ls for column pe	ercentages]	
Pearson: Uncorrect	ed chi2(8) sed F(7.02, 5845.	= 17.1599 42)= 1.4953	P = 0.1637	
Uncorrect Design-ba	ed ch12(8) sed F(7.02, 5845.	= 17.1599 42)= 1.4953	P = 0.1637	

Figure 5-114: How often do G2 drivers send hands-free messages while driving?

Number of strata Number of PSUs	= 20 = 853		Number of obs Population size Design df	= 85 = 199090.4 = 83
How often				
do/did you send				
hands-free				
messages during		classif	ication	
32?	BDE w/ T	BDE w/o	non-BDE	Total
Never	84.62	87.23	84.7	85.52
	[80.36,88.08]	[80.07,92.07]	[77.61,89.85]	[82.3,88.24]
Once	5.013	6.397	4.743	5.45
	[3.2,7.773]	[3.231,12.27]	[2.322,9.442]	[3.815,7.728]
Sometimes	6.152	3.101	7.73	5.328
	[3.96,9.438]	[1.13,8.226]	[4.168,13.89]	[3.744,7.529]
Often	2.464	2.155	1.655	2.245
	[1.284,4.679]	[.6255,7.154]	[.4023,6.551]	[1.273,3.931]
Very Often	1.755	1.12	1,169	1.455
	[.7525,4.037]	[.1872,6.399]	[.2812,4.724]	[.7048,2.979]
Total	100	100	100	100
Key: column pe [95% conf	rcentages idence interval	s for column pe	rcentages]	
Pearson:				
Uncorrected	chi2(8)	= 6.3295		
Design-based	F(6.92, 5764.2	5)= 0.5156	P = 0.8215	

Figure 5-115: Logistic regression

hand_he (running logit	ld_texts_G2_x t on estimati	: 0=Never 1 on sample)	=At least	once		
Survey: Logist	cic regressio	n				
Number of stra Number of PSUs	ata = s =	20 853		Number of Populatio Design df F(6, Prob > F	obs = n size = 828) = =	853 199090.43 833 4.91 0.0001
hand_held	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
classifica~n BDE w/ TD BDE w/o TD non-BDE	1.000 0.555 0.708	(base) 0.122 0.153	-2.676 -1.598	0.008	0.360 0.464	0.855
gender male female	1.000 1.374	(base) 0.247	1.764	0.078	0.965	1.956
ageyears 16 17 18 19	1.000 1.430 3.053 2.666	(base) 0.376 0.831 0.740	1.359 4.103 3.534	0.174 0.000 0.000	0.853 1.790 1.547	2.397 5.208 4.596
_cons	0.246	0.059	-5.815	0.000	0.154	0.395
(running logit Survey: Logist Number of stra Number of PSUs	t on estimati tic regressio ata = s =	on sample) n 20 853		Number of Populatio Design df F(6, Prob > F	obs = n size = 828) = =	853 199090.43 833 4.91 0.0001
hand_held	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
classifica~n BDE w/ TD BDE w/o TD non-BDE	1.803 1.000 1.277	0.397 (base) 0.333	2.676 0.938	0.008	1.170 0.765	2.778
gender male female	1.000 1.374	(base) 0.247	1.764	0.078	0.965	1.956
ageyears 16 17 18 19	1.000 1.430 3.053 2.666	(base) 0.376 0.831 0.740	1.359 4.103 3.534	0.174 0.000 0.000	0.853 1.790 1.547	2.397 5.208 4.596
_cons	0.137	0.044	-6.119	0.000	0.072	0.259

Figure 5-116: How often do drivers make hand-held calls while driving during their G1 period?

Number of str	rata = 24		Number of obs	= 974
Number of PSU	Js = 974		Population size	= 223239.08
			besign di	- 550
How often				
do/did you make				
hand-held				
calls		classif	ication	
during G1?	BDE w/ TD	BDE w/o TD	non-BDE	Total
Never	87.91	93.95	90.6	90.43
	[83.95,91]	[88.57,96.89]	[86.56,93.52]	[88,92.41]
Once	8.862	2.313	5.221	5.978
	[6.235,12.45]	[.7539,6.872]	[3.11,8.639]	[4.454,7.98]
Sometimes	2.524	3.101	2.771	2.762
	[1.279,4.92]	[1.183,7.882]	[1.378,5.497]	[1.719,4.412]
Often	.4121	.6347	.9968	.6086
	[.09118,1.842]	[.1574,2.523]	[.2801,3.483]	[.2735,1.349]
Very Often	. 2928	0	.412	.2241
	[.04101,2.059]		[.05763,2.883]	[.05412,.9228]
Total	100	100	100	100
Key: colur	nn percentages			
[95%	confidence interva	ls for column pe	rcentages]	
Pearson:				
Uncorrect	ted chi2(8)	= 16.4407		
Design-ba	ased F(6.93, 6584.	22)= 1.6127	P = 0.1275	

Figure 5-117: How often do drivers make hands-free calls while driving during their G1 period?

Number of strata	= 24	1	Number of obs	= 974
Number of PSUs	= 974	I	Population size	= 223239.08
		I	Design df	= 950
How often				
do/did you make				
hands-free				
calls during		classif	ication	
G1?	BDE w/ T	BDE w/o	non-BDE	Total
Never	86.28	90.91	87.68	88.07
	[82.26,89.51]	[84.56,94.81]	[81.92,91.79]	[85.29,90.39]
Once	7.63	5.56	3.713	6.128
	[5.261,10.94]	[2.758,10.89]	[1.775,7.603]	[4.493,8.305]
Sometimes	3.276	2.543	4.508	3.303
	[1.858,5.716]	[.8115,7.68]	[2.268,8.763]	[2.143,5.059]
Often	2.269	.9575	2.855	1.972
	[1.109,4.589]	[.1331,6.553]	[1.083,7.309]	[1.111,3.479]
Verv Often	.5393	.03161	1.24	.5258
	[.158,1.825]	[.00444,.2247]	[.38,3.972]	[.2282,1.207]
Total	100	100	100	100
Key: column pe [95% conf	rcentages idence intervals	s for column perc	centages]	
Pearson:				
Uncorrected	chi2(8)	= 11.8674		
Design-based	F(6.25, 5935.21	L)= 0.9939	P = 0.4290	

Figure 5-118: Logistic regression

hand_he	ld_calls_G1_x	: 0=Never 1	=At least	once		
Current: Logici	ia rogragajo	on sampie,				
Survey. Logis	LIC regressio	11				
Number of stra Number of PSUs	ata = 5 =	24 974		Number of Population Design df	obs = n size = =	974 223239.08 950
				F(6, Prob > F	945) =	5.61 0.0000
		Linearized				
hand_held	Odds Ratio	Std. Err.	t	P> t	[95% Conf.	Interval]
classifica~n	1 000	(base)				
BDE W/ ID	0 414	(Dase) 0 163	-2 241	0 0 2 5	0 1 9 1	0 896
BDE W/O ID	0.414	0.103	-2.241	0.025	0.191	1 706
NOU-RDE	0.961	0.281	-0.137	0.891	0.541	1.706
gender male	1.000	(base)				
female	0.594	0.158	-1.964	0.050	0.352	1.000
ageyears						
16	1.000	(base)				
17	3.031	1.355	2.479	0.013	1.260	7.290
18	6.349	2.679	4.381	0.000	2.774	14.530
19	5.507	2.320	4.050	0.000	2.409	12.588
_cons	0.039	0.017	-7.664	0.000	0.017	0.090
(running logi	c on estimati	on sample)				
Survey: Logis	cic regressio	n				
Number of stra	ata =	24		Number of	obs =	974
Number of PSU:	5 =	974		Population	n size =	223239.08
				Design ai	=	950 E 61
				F(0, Prob > F	=	0.0000
	[
hand_held	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
BDE w/ TD	2.415	0.950	2.241	0.025	1.116	5.225
BDE w/o TD	1.000	(base)				
non-BDE	2.320	0.988	1.975	0.049	1.005	5.353
gender						
male	1.000	(base)				
female	0.594	0.158	-1.964	0.050	0.352	1.000
ageyears						
16	1.000	(base)				
17	3.031	1.355	2.479	0.013	1.260	7.290
18	6.349	2.679	4.381	0.000	2.774	14.530
19	5.507	2.320	4.050	0.000	2.409	12.588
_cons	0.016	0.009	-7.637	0.000	0.006	0.047

Figure 5-119: How often do G2 drivers make hand-held calls while driving?

Number of stra	ta = 20		Number of obs	= 853
Number of PSUs	= 853		Population size	= 199090.43
			Design df	= 833
How often				
do/did you				
make				
hand-held				
calls		classif	ication	
during G2?	BDE w/ TD	BDE w/o TD	non-BDE	Total
Never	72.72	79.5	72.31	74.98
	[67.86,77.1]	[71.57,85.65]	[64.47,78.98]	[71.27,78.36]
Once	11.44	6.356	11.22	9.669
	[8.482,15.27]	[3.187,12.28]	[6.983,17.54]	[7.524,12.34]
Sometimes	10.83	9.015	12.29	10.41
	[7.921,14.64]	[5.12,15.39]	[7.876,18.66]	[8.134,13.24]
Often	2.963	4.125	.4646	3.011
	[1.565,5.541]	[1.835,9.008]	[.06492,3.245]	[1.827,4.924]
Very Often	2.04	1.008	3.724	1.923
	[.9307,4.414]	[.14,6.886]	[1.611,8.375]	[1.054,3.483]
Total	100	100	100	100
Key: column	percentages			
[95% c	onfidence interva	ls for column pe	rcentages]	
Pearson:				
Uncorrecte	d chi2(8)	= 14.3882		
Design-bas	ed F(6.60, 5500.	72)= 1.2055	P = 0.2975	

Figure 5-120: How often do G2 drivers make hands-free calls while driving?

Number of strata Number of PSUs	= 20 = 853		Number of obs Population siz Design df	= 853 e = 199090.43 = 833
How often do/did you make hands-free calls during		classif	ication	
G2?	BDE w/ T	BDE w/o	non-BDE	Total
Never	74.49 [69.7,78.76]	76.39 [68.19,83]	74.34 [66.44,80.91]	75.12 [71.34,78.55]
Once	7.966 [5.574,11.26]	8.853 [4.896,15.48]	8.472 [4.918,14.21]	8.341 [6.262,11.03]
Sometimes	9.975 [7.263,13.55]	7.565 [4.2,13.25]	7.631 [4.121,13.7]	8.821 [6.782,11.4]
Often	4.949 [3.064,7.898]	5.064 [2.353,10.56]	6.203 [3.059,12.17]	5.164 [3.574,7.408]
Very Often	2.616 [1.378,4.911]	2.128 [.5736,7.572]	3.358 [1.305,8.368]	2.553 [1.498,4.318]
Total	100	100	100	100
Key: column pe [95% coni	ercentages Eidence interval	s for column pe	rcentages]	
Pearson: Uncorrected Design-based	chi2(8) F(7.10, 5915.1	= 2.4577 .0)= 0.2043	P = 0.9853	

Figure 5-121: Logistic regression

Survey: Logistic regression Number of strata = 20 Number of PSUs = 853 Number of strata = 20 Number of PSUs = 853 Number of PSU	hand_he (running logi	ld_calls_G2_x t on estimati	: 0=Never 1 on sample)	.=At least	once		
Number of strata = 20 Number of PSUB = 853 Number of PSUB = 853 Number of PSUB = 853 Population size = 199090.43 Design df = 833 F(6, 828) = 4.70 Prob > F = 0.0001	Survey: Logis	tic regressio	n				
F(6, 828) = 4.70 $Frob > F = 0.0001$ $F(6, 828) = 0.0000$ $F(7, 9.000 = 0.000$ $F(7, 9.000 = 0.000 = 0.000$ $F(7, 9.000 = 0.000 = 0.000$ $F(7, 9.000 = 0.000 = 0.000 = 0.000$ $F(7, 9.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000$ $F(7, 9.000 = 0.00$	Number of stra Number of PSU:	ata = s =	20 853		Number of Population Design df	obs = n size = =	853 199090.43 833
hand_held Odds Ratio Std. Err. t P> t [95% Conf. Interval] classifica-n BDE w/ TD 1.000 (base) 0.450 0.342 0.945 gender male 1.000 (base) 0.453 0.533 1.324 gender male 1.000 (base) 0.453 0.533 1.324 gender male 1.000 (base) 0.453 0.586 1.273 ageyears 16 1.000 (base) 0.458 0.679 2.242 18 3.249 0.993 3.854 0.000 1.783 5.920 19 2.622 0.827 3.056 0.002 1.412 4.868 _cons 0.192 0.051 -6.156 0.000 0.113 0.325 (running logit on estimation sample) Survey: Logistic regression Number of obs = 853 Number of PSUS = 853 Dopulation size = 199090.43 Design df = 833 F(6, 828) </td <td></td> <td></td> <td></td> <td></td> <td>F(6, Prob > F</td> <td>828) =</td> <td>4.70 0.0001</td>					F(6, Prob > F	828) =	4.70 0.0001
hand_held Odds Ratio Std. Err. t P> t [95% Conf. Interval] classifica-n BDE w/ TD 1.000 (base) 0.569 0.147 -2.181 0.029 0.342 0.945 0.945 0.533 1.324 gender male 1.000 (base) 0.453 0.533 1.324 gender male 1.000 (base) 0.453 0.533 1.324 ageyears 16 1.000 (base) 17 1.234 0.375 0.690 0.490 0.679 2.242 18 3.249 0.993 3.854 0.000 1.783 5.920 19 2.622 0.827 3.056 0.002 1.412 4.868 _cons 0.192 0.051 -6.156 0.000 0.113 0.325 (running logit on estimation sample) Survey: Logistic regression Number of FNUs 853 Population size 199090.43 Design df 833 F(6, 828) 4.70 Number of PSUs 853 Design df 833 F(6, 828) 1.000 Dase 1.412 ageyears 1.000 (base) non-BDE 1.758 0.455 2.181 0.029 1.058 2.921 BDE w/0 TD 1.000 (base) non-BDE 1.477 0.432 1.335 0.182 0.832 2.622 gender 0			Linearized				
classifica-n BDE w/ TD 1.000 (base) BDE w/ TD 0.569 0.147 -2.181 0.029 0.342 0.945 0.840 0.195 -0.751 0.453 0.533 1.324 gender male 1.000 (base) gender male 1.000 (base) 16 1.000 (base) 17 1.234 0.375 0.690 0.490 0.679 2.242 18 3.249 0.993 3.854 0.000 1.783 5.920 19 2.622 0.827 3.056 0.002 1.412 4.868 _cons 0.192 0.051 -6.156 0.000 0.113 0.325 (running logit on estimation sample) Survey: Logistic regression Number of Strata = 20 Number of PSUs = 853 Number of PSUs = 853 Number of PSUs = 853 Linearized hand_held Odds Ratio Std. Err. t P> t [95% Conf. Interval] classifica-n BDE w/ TD 1.000 (base) non-BDE 1.758 0.455 2.181 0.029 1.058 2.921 BDE w/ TD BDE w/ TD 1.758 0.455 2.181 0.029 1.058 2.921 BDE w/ TD BDE w/ TD 1.477 0.432 1.335 0.182 0.832 2.622 gender male 1.000 (base) 1.417 -0.742 0.458 0.586 1.273 ageyears 16 1.000 (base) 17 1.234 0.375 0.690 0.490 0.679 2.242 18 3.249 0.933 3.854 0.000 1.783 5.920 19 2.622 0.827 3.056 0.002 1.412 4.668	hand_held	Odds Ratio	Std. Err.	t	P> t	[95% Conf.	Interval]
BDE w/o TD non-BDE 0.569 0.147 -2.181 0.029 0.342 0.945 gender male 0.840 0.195 -0.751 0.453 0.533 1.324 gender male 1.000 (base) 0.771 -0.742 0.458 0.586 1.273 ageyears 1 1.000 (base) 0.342 0.375 1.324 18 3.249 0.375 0.690 0.490 0.679 2.242 19 2.622 0.827 3.056 0.000 1.412 4.868 _cons 0.192 0.051 -6.156 0.000 0.113 0.325 (running logit on estimation sample) Survey: Logistic regression Number of obs = 853 Number of Strata = 20 Number of obs = 853 Population size 19909.43 1.758 0.455 2.181 0.029 1.058 2.921 hand_held Odds Ratio Std. Err. t P> t [95% Conf. Interval]	classifica~n BDE w/ TD	1.000	(base)				
bbs w/O DD 0.030 0.147 2.131 0.025 0.532 0.532 gender male 1.000 (base) 0.1453 0.533 1.324 ageyears 16 1.000 (base) 0.453 0.586 1.273 ageyears 16 1.000 (base) 0.171 -0.742 0.458 0.586 1.273 ageyears 16 1.000 (base) 17 1.234 0.375 0.690 0.490 0.679 2.242 18 3.249 0.393 3.854 0.000 1.783 5.920 19 2.622 0.827 3.056 0.002 1.412 4.868 _cons 0.192 0.051 -6.156 0.000 0.113 0.325 (running logit on estimation sample) Survey: Logistic regression Number of strata = 20 Number of obs = 853 Number of PSUs = 853 Linearized Design df = 853 rolasifica-n BDE w/ TD 1.058 0.455 2.181 0.029 1.0		0 569	0 147	-2 191	0 0 2 9	0 342	0 945
Non-BDE 0.840 0.195 -0.751 0.453 0.533 1.324 gender nale 1.000 (base) 0.771 -0.742 0.458 0.586 1.273 ageyears 16 1.000 (base) 1.71 -0.742 0.458 0.586 1.273 ageyears 16 1.000 (base) 1.77 1.234 0.375 0.690 0.490 0.679 2.242 18 3.249 0.993 3.854 0.000 1.412 4.868 _cons 0.192 0.051 -6.156 0.000 0.113 0.325 (running logit on estimation sample) Survey: Logistic regression Number of obs = 853 Number of PSUs = 853 Population size = 199090.43 Design df = 833 F(6, 828) = 4.70 Number of PSUs = 1.758 0.455 2.181 0.029 1.058 2.921 EDE w/ TD 1.000 (base) 1.477 0.432 1.335 0.182	RDF M/O ID	0.569	0.147	-2.181	0.029	0.342	0.945
gender male 1.000 (base) female 0.864 0.171 -0.742 0.458 0.586 1.273 ageyears 16 1.000 (base) 1 1.234 0.375 0.690 0.490 0.679 2.242 18 3.249 0.993 3.854 0.000 1.783 5.920 19 2.622 0.827 3.056 0.002 1.412 4.868 _cons 0.192 0.051 -6.156 0.000 0.113 0.325 (running logit on estimation sample) Survey: Logistic regression Number of obs = 853 Number of PSUs = 853 Population size = 19909.43 Design df = 833 F(6, 828) = 4.70 classifica-n BDE w/ TD 1.758 0.455 2.181 0.029 1.058 2.921 BDE w/ TD 1.000 (base) 1.477 0.432 1.335 0.182 0.832 2.622 gender male	non-BDE	0.840	0.195	-0.751	0.453	0.533	1.324
female 0.864 0.171 -0.742 0.458 0.586 1.273 ageyears 16 1.000 (base) 1 1.234 0.375 0.690 0.490 0.679 2.242 18 3.249 0.993 3.854 0.000 1.783 5.920 19 2.622 0.827 3.056 0.002 1.412 4.868 _cons 0.192 0.051 -6.156 0.000 0.113 0.325 (running logit on estimation sample) Survey: Logistic regression Number of strata = 20 Number of obs = 853 Number of PSUs = 853 Population size = 19909.43 Linearized Design df = 833 F(6, 828) = 4.70 Prob > F = 0.0001 1.758 0.455 2.181 0.029 1.058 2.921 BDE w/ 0 TD 1.000 (base) 1.477 0.432 1.335 0.182 0.632 2.622 gender male </td <td>gender</td> <td>1 000</td> <td>(base)</td> <td></td> <td></td> <td></td> <td></td>	gender	1 000	(base)				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	female	0.864	0.171	-0.742	0.458	0.586	1.273
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ageyears						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16	1.000	(base)				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17	1 234	0 375	0 690	0 490	0 679	2 242
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10	2 240	0.003	2 954	0.000	1 702	E 020
19 2.622 0.827 3.056 0.002 1.412 4.868 cons 0.192 0.051 -6.156 0.000 0.113 0.325 (running logit on estimation sample) Survey: Logistic regression Number of strata = 20 Number of obs = 853 Number of PSUs = 853 Population size = 199090.43 Design df = 833 F(6, 828) = 4.70 Prob > F = 0.0001 Design df = 833 F(6, 828) = 4.70 Prob > F = 0.0001 dassifica-n D 1.758 0.455 2.181 0.029 1.058 2.921 BDE w/ TD 1.000 (base) 0.432 1.335 0.182 0.832 2.622 gender male 1.000 (base) 0.458 0.586 1.273 ageyears 16 1.000 (base) 0.459 0.458 0.586 1.273 <td< td=""><td>10</td><td>3.249</td><td>0.995</td><td>3.054</td><td>0.000</td><td>1.703</td><td>5.920</td></td<>	10	3.249	0.995	3.054	0.000	1.703	5.920
	19	2.622	0.827	3.056	0.002	1.412	4.868
(running logit on estimation sample) Survey: Logistic regression Number of strata = 20 Number of PSUS = 853 Population size = 199090.43 Design df = 833 F(6, 828) = 4.70 Prob > F = 0.0001 hand_held Odds Ratio Std. Err. t Prob > F 0.0001 Linearized hand_held 0dds Ratio Std. Err. t P> t [95% Conf. Interval] classifica-n BDE w/ TD I.000 (base) non-BDE 1.758 0.455 2.181 0.029 1.058 2.921 1.000 (base) non-BDE gender male 1.000 (base) 1.417 0.432 1.335 0.182 0.832 2.622 gender male 0.864 0.171 -0.742 0.458 0.586 1.273 ageyears 16 1.000 (base) 17 1.234 0.375 0.690 0.490 0.679 2.242 18 3.249 0.993 3.854 0.000 1.783 5.920 19 2.622 0.827 3.056 0.002 1.412 4.868 _cons 0.109 0.041 -5.902 0.000 0.052 0.228	_cons	0.192	0.051	-6.156	0.000	0.113	0.325
Survey: Logistic regression Number of strata = 20 Number of PSUs = 853 Population size = 199090.43 Design df = 833 F(-6, -828) = 4.70 Prob > F = 0.0001 hand_held	(running logi	t on estimati	on sample)				
Number of strata Number of PSUs=20 853 Number of obs Population size 199090.43 Design df F = 833 $F(-6, -828)$ $= -4.70$ Prob > Fhand_heldOdds RatioStd. Err. Std. Err.t $P > t $ $[95\% Conf. Interval]$ classifica-n BDE w/ TD BDE w/ TD1.758 1.000 (base) 1.477 0.432 1.335 0.182 0.458 0.832 2.622 gender male female1.000 0.864 0.171 -0.742 0.458 0.458 0.586 1.273 ageyears 16 17 1.234 0.375 0.690 0.490 0.679 $2.2421.83.2490.9933.8540.0001.7835.9201.912_cons0.1090.041-5.9020.0000.0520.228$	Survey: Logis	tic regressio	n				
Number of PSUS = 853 Population size = 199090.43 Design df = 833 F(6, 828) = 4.70 Prob > F = 0.0001 Linearized hand_held Odds Ratio Std. Err. t P> t [95% Conf. Interval] Classifica-n BDE w/ TD 1.758 0.455 2.181 0.029 1.058 2.921 Linearized 0.000 (base) non-BDE 1.477 0.432 1.335 0.182 0.832 2.622 gender male 1.000 (base) female 0.864 0.171 -0.742 0.458 0.586 1.273 ageyears 16 1.000 (base) 17 1.234 0.375 0.690 0.490 0.679 2.242 18 3.249 0.993 3.854 0.000 1.783 5.920 19 2.622 0.827 3.056 0.002 1.412 4.868 cons 0.109 0.041 -5.902 0.000 0.052 0.228	Number of stra	ata =	20		Number of	obs =	853
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Number of PSU	s =	853		Populatio	n size =	199090.43
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					Design df		833
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					ECDIGN G	828) -	4 70
hand_held Ddds Ratio Linearized Std. Err. p> t [95% Conf. Interval] classifica~n BDE w/ TD BDE w/ TD non-BDE 1.758 0.455 2.181 0.029 1.058 2.921 gender male 1.000 (base) 0.832 2.622 gender male 1.000 (base) 0.458 0.182 0.832 2.622 gender male 1.000 (base) 0.458 0.586 1.273 ageyears 16 1.000 (base) 0.459 0.458 0.586 1.273 18 3.249 0.375 0.690 0.490 0.679 2.242 19 2.622 0.827 3.056 0.002 1.412 4.868 _cons 0.109 0.041 -5.902 0.000 0.052 0.228					Prob > F	=	0.0001
hand_held Odds Ratio Std. Err. t P> t [95% Conf. Interval] classifica~n BDE w/ TD 1.758 0.455 2.181 0.029 1.058 2.921 BDE w/ o TD 1.000 (base) 0.432 1.335 0.182 0.832 2.622 gender male 1.000 (base) 0.864 0.171 -0.742 0.458 0.586 1.273 ageyears 16 1.000 (base) 0.4375 0.690 0.490 0.679 2.242 18 3.249 0.993 3.854 0.000 1.783 5.920 19 2.622 0.827 3.056 0.002 1.412 4.868							
classifica-n BDE w/ TD 1.758 0.455 2.181 0.029 1.058 2.921 BDE w/o TD 1.000 (base) 1.335 0.182 0.832 2.622 gender male 1.000 (base) 0.171 -0.742 0.458 0.586 1.273 ageyears 16 1.000 (base) 0.4375 0.690 0.490 0.679 2.242 18 3.249 0.993 3.854 0.000 1.783 5.920 19 2.622 0.827 3.056 0.022 1.412 4.868	hand_held	Odds Ratio	Std. Err.	t	P> t	[95% Conf.	Interval]
BDE w/ TD 1.758 0.455 2.181 0.029 1.058 2.921 BDE w/o TD 1.000 (base) 0.432 1.335 0.182 0.832 2.622 gender male 1.000 (base) 0.832 2.622 gender male 1.000 (base) 0.458 0.586 1.273 ageyears 16 1.000 (base) 0.458 0.586 1.273 18 3.249 0.375 0.690 0.490 0.679 2.242 18 3.249 0.993 3.854 0.000 1.783 5.920 19 2.622 0.827 3.056 0.002 1.412 4.868	classifica~n						
BDE w/o TD 1.000 (base) 1.335 0.182 0.832 2.622 gender male 1.000 (base) 0.432 1.335 0.182 0.832 2.622 gender male 1.000 (base) 0.458 0.586 1.273 ageyears 16 1.000 (base) 0.432 0.458 0.586 1.273 18 3.249 0.375 0.690 0.490 0.679 2.242 19 2.622 0.827 3.056 0.002 1.412 4.868 _cons 0.109 0.041 -5.902 0.000 0.052 0.228	BDE w/ TD	1.758	0.455	2,181	0.029	1.058	2.921
non-BDE 1.477 0.432 1.335 0.182 0.832 2.622 gender male 1.000 (base) 0.458 0.586 1.273 ageyears 16 1.000 (base) 0.458 0.586 1.273 16 1.000 (base) 0.690 0.490 0.679 2.242 18 3.249 0.993 3.854 0.000 1.783 5.920 19 2.622 0.827 3.056 0.002 1.412 4.868 _cons 0.109 0.041 -5.902 0.000 0.052 0.228	BDE W/O TD	1 000	(hase)				
gender male 1.000 (base) female 0.864 0.171 -0.742 0.458 0.586 1.273 ageyears 16 1.000 (base)	non-BDE	1.477	0.432	1.335	0.182	0.832	2.622
male 1.000 (base) female 0.864 0.171 -0.742 0.458 0.586 1.273 ageyears 16 16 1.000 (base) 17 1.234 0.375 0.690 0.490 0.679 2.242 18 3.249 0.993 3.854 0.000 1.783 5.920 19 2.622 0.827 3.056 0.002 1.412 4.868 _cons 0.109 0.041 -5.902 0.000 0.052 0.228	gender						
female 0.864 0.171 -0.742 0.458 0.586 1.273 ageyears 16 1.000 (base) 17 1.234 0.375 0.690 0.490 0.679 2.242 18 3.249 0.993 3.854 0.000 1.783 5.920 19 2.622 0.827 3.056 0.002 1.412 4.868 _cons 0.109 0.041 -5.902 0.000 0.052 0.228	male	1.000	(base)				
ageyears 16 1.000 (base) 17 1.234 0.375 0.690 0.490 0.679 2.242 18 3.249 0.993 3.854 0.000 1.783 5.920 19 2.622 0.827 3.056 0.002 1.412 4.868 _cons 0.109 0.041 -5.902 0.000 0.052 0.228	female	0.864	0.171	-0.742	0.458	0.586	1.273
16 1.000 (base) 17 1.234 0.375 0.690 0.490 0.679 2.242 18 3.249 0.993 3.854 0.000 1.783 5.920 19 2.622 0.827 3.056 0.002 1.412 4.868 _cons 0.109 0.041 -5.902 0.000 0.052 0.228	agevears						
17 1.234 0.375 0.690 0.490 0.679 2.242 18 3.249 0.993 3.854 0.000 1.783 5.920 19 2.622 0.827 3.056 0.002 1.412 4.868	16	1 000	(base)				
17 1.234 0.375 0.690 0.490 0.679 2.242 18 3.249 0.993 3.854 0.000 1.783 5.920 19 2.622 0.827 3.056 0.002 1.412 4.868	17	1 224	0 275	0 600	0 400	0 670	2 242
10 3.249 0.993 3.854 0.000 1.783 5.920 19 2.622 0.827 3.056 0.002 1.412 4.868	1 /	1.234	0.3/5	0.090	0.490	U.0/9 1 702	2.242 E 000
2.622 0.827 3.056 0.002 1.412 4.868 0.109 0.041 -5.902 0.000 0.052 0.228	ΤQ	3.249	0.993	3.054	0.000	1./83	5.920
0.109 0.041 -5.902 0.000 0.052 0.228	19	2.622	0.827	3.056	0.002	1.412	4.868
	_cons	0.109	0.041	-5.902	0.000	0.052	0.228

Figure 5-122: How often do young drivers listen to music while driving during G1?

Number of strata	= 24		Number of obs	= 97
Number of PSUs	= 974		Population siz	e = 223239.0
			Design df	= 95
How often				
do/did you				
listen to music				
while driving		classif	ication	
during G1?	BDE w/ T	BDE w/o	non-BDE	Total
Never	6.244	15.2	13.12	10.59
	[4.213,9.161]	[10.13,22.18]	[8.701,19.31]	[8.344,13.36]
Once	6.385	9.82	13.62	9.036
	[4.2,9.592]	[5.852,16.02]	[9.028,20.05]	[6.963,11.65]
Gemetimee	14 72	10.00	10 64	17.00
Sometimes	14./3	19.99 [14 10 07 E1]	10.04	11.20
	[11.30,10.00]	[14.12,27.51]	[13.07,24.09]	[14.45,20.40]
Often	20.31	14.37	15.63	17.4
	[16.51,24.73]	[9.587,20.97]	[10.94,21.82]	[14.71,20.47]
Very Often	52.32	40.63	38.99	45.71
Å	[47.14,57.46]	[33.26,48.44]	[32.62,45.77]	[42.03,49.45]
Total	100	100	100	100
iotai	100	100	100	100
Key: column pe [95% conf	ercentages Eidence interval	s for column pe	ercentages]	
Pearson:				
Uncorrected	chi2(8)	= 39.8505		
Design-based	F(7.64, 7255.0	1)= 3.2377	P = 0.0014	

Figure 5-123: Logistic regression

music_G1 (running logi	_reg : 0=Not t on estimati	Often 1=Ofte on sample)	en or Very	often		
Survey: Logis	tic regressio	n				
Number of stra Number of PSUa	ata = s =	24 974		Number of Populatio Design df F(6, Prob > F	obs = n size = 945) = =	974 223239.08 950 4.90 0.0001
music_G1_reg	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
classifica~n						
BDE w/ TD	1.000	(base)				
BDE w/o TD	0.483	0.099	-3.544	0.000	0.323	0.723
non-BDE	0.592	0.109	-2.850	0.004	0.413	0.849
gender	1 000					
male	1.000	(base)				
female	1.042	0.178	0.243	0.808	0.745	1.458
ageyears						
16	1.000	(base)				
17	2 319	0 545	3 577	0 000	1 462	3 680
10	1 760	0.545	2.200	0.000	1 107	2.000
10	1.700	0.422	2.389	0.017	1.107	2.622
19	1.652	0.398	2.087	0.037	1.030	2.650
_cons	1.407	0.328	1.465	0.143	0.891	2.223
(running logi	t on estimati	on sample)				
Survey: Logis	tic regressio	n				
Number of stra	ata =	24		Number of	obs =	974
Number of PSU	s =	974		Populatio	n size =	223239.08
				Design df	=	950
				F(6	945) -	4 90
				Prob > F	=	0.0001
	[
music_G1_reg	Odds Ratio	Std. Err.	t	P> t	[95% Conf.	Interval]
classifica~n						
BDE w/ TD	2.069	0.425	3.544	0.000	1.383	3.095
BDE w/o TD	1.000	(base)				
non-BDE	1.226	0.265	0.942	0.346	0.802	1.873
aandaa						
gender						
male	1.000	(base)				
female	1.042	0.178	0.243	0.808	0.745	1.458
ageyears						
16	1.000	(base)				
17	2.319	0.545	3.577	0.000	1.462	3.680
18	1.768	0.422	2.389	0.017	1.107	2.822
19	1.652	0.398	2.087	0.037	1.030	2.650
_cons	0.680	0.177	-1.478	0.140	0.407	1.135
	I					

Figure 5-124: How often do young drivers listen to music while driving during G2?

Number of strata	= 20		Number of obs	= 85
Number of PSUs	= 853		Population siz	e = 199090.4
			Design df	= 83
How often				
do/did you				
listen to music				
while driving		classif	ication	
during G2?	BDE w/ T	BDE w/o	non-BDE	Total
Never	6.558	5.785	7.374	6.408
	[4.531,9.402]	[2.772,11.68]	[4.227,12.56]	[4.692,8.693]
Once	2.519	4.099	2.175	3.012
	[1.296,4.84]	[1.807,9.029]	[.7034,6.522]	[1.847,4.876]
Sometimes	4.224	11.95	7.674	7.354
	[2.515,7.011]	[7.369,18.79]	[4.125,13.84]	[5.344,10.04]
Often	11.49	12.18	14.61	12.16
	[8.5,15.35]	[7.522,19.12]	[9.706,21.4]	[9.666,15.19]
Very Often	75.21	65.99	68.17	71.07
-	[70.42,79.45]	[57.41,73.64]	[60.14,75.25]	[67.12,74.71]
Total	100	100	100	100
Key: column pe	ercentages			
[95% conf	idence interval	s for column pe	ercentages]	
Pearson:				
Uncorrected	chi2(8)	= 19.4469		
Design-based	F(7.18, 5980.3	30)= 1.7538	P = 0.0900	

Figure 5-125: Logistic regression

music_G2_ (running logit	_reg : U=Not t on estimati	Often 1=Ofte on sample)	n or Very	Often		
(10000000000000000000000000000000000000		on bampio,				
Survey: Logist	tic regressio	n				
Number of stra	ata =	20		Number of	obs =	853
Number of PSUs	3 =	853		Populatic	on size =	199090.43
				Design df	=	833
				F(6,	828) =	2.46
				Prob > F	=	0.0229
		Linearized				
music_G2_reg	Odds Ratio	Std. Err.	t	₽> t	[95% Conf.	Interval]
classifica~n						
BDE w/ TD	1.000	(base)				
BDE w/o TD	0.486	0.133	-2.640	0.008	0.285	0.831
non-BDE	0.673	0.192	-1.389	0.165	0.385	1.177
gender						
male	1.000	(base)				
female	1.672	0.394	2.177	0.030	1.052	2.656
ageyears	1 000	(1)				
16	1.000	(base)				
17	1.723	0.529	1.770	0.077	0.942	3.148
18	1.639	0.516	1.569	0.117	0.883	3.042
19	2.517	0.907	2.561	0.011	1.241	5.106
_cons	2.881	0.735	4.148	0.000	1.746	4.754
(running logit	t on estimati	on sample)				
Survey: Logist	tic regressio	n				
Number of stra	ata =	20		Number of	obs =	853
Number of PSUs	3 =	853		Populatic	on size =	199090.43
				Design df	=	833
				F(6,	828) =	2.46
				Prob > F	=	0.0229
		Linoarizod				
music G2 rea	Odds Ratio	Std. Err	+	P> t	[95% Conf	Intervall
				1, 1, 0		
classifica~n						
BDE w/ TD	2.056	0.561	2.640	0.008	1.203	3.513
BDE w/o TD	1.000	(base)				
non-BDE	1.384	0.434	1.038	0.300	0.748	2.561
gender						
male	1.000	(base)				
female	1.672	0.394	2.177	0.030	1.052	2.656
agovoara						
ayeyears 16	1 000	(base)				
17	1 7 2 2	(Dabe)	1 770	0 077	0 040	2 1/0
1 0	1 620	0.549	1 560	0 117	0.942	2 040
10	2.039	0.510	2.509	0.11	1 041	5.042
19	2.51/	0.907	2.30⊥	0.011	1.241	5.100
_cons	1.402	0.519	0.911	0.362	0.677	2.901
	1					

Figure 5-126: How often do young drivers operate vehicles while tired during G1?

Number of stra	ata = 24		Number of obs	= 974
Number of PSUs	s = 974		Population size Design df	= 223239.08 = 950
How often				
drive tired		alassif	ication	
during G1?	BDE w/ TD	BDE w/o TD	non-BDE	Total
Never	40.84	52.24	57.96	48.16
	[35.85,46.02]	[44.21,60.15]	[51.02,64.6]	[44.38,51.96]
Once	32.13	30.7	24.02	29.94
	[27.49,37.15]	[23.81,38.57]	[18.51,30.56]	[26.53,33.58]
Sometimes	22.56	15.14	13.28	18.19
	[18.53,27.17]	[10.38,21.56]	[9.32,18.58]	[15.5,21.23]
Often	3.292	1.548	4.045	2.892
	[1.861,5.761]	[.4206,5.528]	[2.257,7.146]	[1.913,4.351]
Very Often	1.191	.3694	.6954	.8207
	[.4185,3.339]	[.06069,2.213]	[.2185,2.191]	[.3765,1.78]
Total	100	100	100	100
Key: column [95% c	n percentages confidence interva	als for column pe	ercentages]	
Dearson:				
Uncorrecte	ed chi2(8)	= 27.3251		
Design-bas	ed F(7.15, 6796	.83)= 2.6257	P = 0.0099	

180 The knowled

Figure 5-127: Logistic regression

		•				
tin (running logi)	red_G1_x : 0= t on estimati	Never 1=At l on sample)	east once	2		
Survey: Logist	tic regressio	n				
Number of strata = Number of PSUs =		24 974		Number of Populatio	obs = n size =	974 223239.08
				Design di	=	950
				F(6,	945) =	4.00
				Prob > F	=	0.0006
		Linearized				
tired_G1_x	Odds Ratio	Std. Err.	t	P> t	[95% Conf.	Interval]
classifica~n						
BDE w/ TD	1.000	(base)				
BDE w/o TD	0.639	0.126	-2.269	0.023	0.434	0.941
non-BDE	0.628	0.112	-2.620	0.009	0.443	0.890
gender	1 000	(1)				
male	1.000	(base)				-
female	1.208	0.194	1.176	0.240	0.881	1.656
ageyears	1 000	(1)				
16	1.000	(base)				
17	1.789	0.404	2.578	0.010	1.149	2.785
18	2.223	0.523	3.394	0.001	1.401	3.527
19	1.456	0.342	1.603	0.109	0.919	2.308
_cons	0.741	0.165	-1.343	0.179	0.479	1.148
(running logi	t on estimati	on sample)				
Survey: Logist	tic regressio	n				
Number of stra	ata =	2.4		Number of	obs =	974
Number of DSU		974		Dopulatio	n gizo -	222220 09
Number of PSU:	5 –	9/4		Populatio	II SIZE -	223239.00
					=	950
				F(6, Prob > F	945) =	4.00 0.0006
		Linearized				
	Odds Ratio	Sta. Err.	L	P> L	[95% CONL.	
classifica~n	1 565	0 200	2 260	0 0 2 2	1 060	2 205
RDF (1.505	0.309	2.209	0.023	1.002	∠.305
BDE w/o TD	1.000	(base)				
non-BDE	0.983	0.213	-0.081	0.935	0.643	1.502
gender						
male	1.000	(base)				
female	1,208	0,194	1 176	0.240	0.881	1 656
_0	1.200					
ageyears						
16	1.000	(base)				
17	1.789	0.404	2.578	0.010	1.149	2.785
18	2.223	0.523	3.394	0.001	1.401	3.527
19	1.456	0.342	1.603	0.109	0.919	2.308
_cons	0.474	0.122	-2.897	0.004	0.286	0.786
	1					

Figure 5-128: How often do young drivers operate vehicles while tired during G2?

Number of str	cata = 20		Number of obs	= 853
Number of PSU	Js = 853		Population size Design df	= 199090.43 = 833
How often				
do/did you drive tired		alaasif	igation	
during G2?	BDE w/ TD	BDE w/o TD	non-BDE	Total
Never	25.24	32.51	35.23	29.13
	[21.02,29.99]	[24.99,41.06]	[27.9,43.33]	[25.5,33.05]
Once	22.84	17.02	20.82	20.57
	[18.82,27.43]	[11.58,24.32]	[15.02,28.12]	[17.51,24]
Sometimes	31.31	35.54	24.02	31.74
	[26.68,36.35]	[28.05,43.82]	[17.85,31.49]	[28.04,35.68]
Often	14.86	11.82	11.52	13.35
	[11.48,19.03]	[7.394,18.36]	[7.263,17.79]	[10.81,16.38]
Very Often	5.743	3.108	8.414	5.215
	[3.715,8.778]	[1.182,7.922]	[4.759,14.45]	[3.709,7.286]
Total	100	100	100	100
Key: colum [95%	nn percentages confidence interva	ls for column pe	ercentages]	
Pearson:				
Uncorrect	ed chi2(8)	= 18.1085		
Design-ba	ased F(7.12, 5928.	14)= 1.6252	P = 0.1219	

Figure 5-129: Logistic regression

		-				
ti:	red_G2_x : 0=	Never 1=At 1	east once	2		
(running logi	t on estimati	on sample)				
Survey: Logis	tic regressio	n				
Number of stra	ata =	20		Number of	obs =	853
Number of PSU	s =	853		Populatio	n size =	199090.43
				Design df	=	833
				F(6,	828) =	2.14
				Prob > F	- =	0.0465
	••••••					
		Linearized				
tired G2 x	Odds Ratio	Std. Err.	t	P> +	[95% Conf.	Intervall
			-	- 1-1		
classifica~n						
	1 000	(here)				
BDE W/ ID	1.000	(Dase)	1 000	0 050	0 415	1 010
BDE w/o TD	0.650	0.148	-1.893	0.059	0.415	1.016
non-BDE	0.587	0.129	-2.416	0.016	0.381	0.905
gender						
male	1.000	(base)				
female	1.430	0.271	1.885	0.060	0.985	2.076
agevears						
16	1 000	(hage)				
17	1 540	(Dase)	1 7 2 4	0 002	0 0 4 4	2 5 2 0
17	1.540	0.390	1.734	0.083	0.944	2.539
18	1.703	0.455	1.991	0.047	1.008	2.877
19	1.850	0.518	2.197	0.028	1.068	3.207
_cons	1.523	0.332	1.928	0.054	0.993	2.336
(running logi	t on estimati	on sample)				
Survey: Logis	tic regressio	n				
Number of stra	ata =	20		Number of	obs =	853
Number of PSU	s =	853		Populatio	n size =	199090.43
				Design df	=	833
				E(6	828) -	2 14
				F(0, Drob > F	020) =	0 0465
				PIOD > F	-	0.0405
		Linearized				
tired C2 r	Odda Datio	Ctd Err	+	D> +	[OE% Conf	Thtorrall
tirea_Gz_x	OUUS RALIO	Stu. EII.	L	P> U	[95% CONT.	Incervarj
alegaifiae m						
ciassilica~n	1 500	0 251	1 000	0.050	0 004	0 405
BDE W/ TD	1.539	U.351	T.883	0.059	U.984	2.407
BDE w/o TD	1.000	(base)				
non-BDE	0.904	0.233	-0.393	0.694	0.545	1.499
gender						
male	1.000	(base)				
female	1.430	0.271	1.885	0.060	0.985	2.076
_0	1		2.000			2.0.0
agevearg						
ageyears	1 000	(bege)				
10	1.000	(pase)	_			
17	1.548	0.390	1.734	0.083	0.944	2.539
18	1.703	0.455	1.991	0.047	1.008	2.877
19	1.850	0.518	2.197	0.028	1.068	3.207
cons	0.989	0.311	-0.035	0.972	0.534	1.834

Figure 5-130: How often do G2 drivers take chances while driving just for the fun of it?

Number of strata	= 20		Number of obs	= 853
Number of PSUS	= 853		Population size Design df	= 833
How often do you take chances while driving for the				
fun of it		classi	fication	
during G2?	BDE w/ T	BDE w/o	non-BDE	Total
Never	71.39	76.51	71.83	73.21
	[66.51,75.83]	[68.32,83.1]	[64,78.52]	[69.4,76.69]
Once	16.97	14.79	16.62	16.17
	[13.45,21.19]	[9.532,22.22]	[11.47,23.47]	[13.34,19.47]
Sometimes	7.22	8.595	5.967	7.516
	[4.889,10.54]	[4.773,14.99]	[3.176,10.93]	[5.529,10.14]
Often	2.968	0	4.637	2.185
	[1.646,5.297]		[2.156,9.689]	[1.365,3.481]
Very Often	1.448	.1117	.951	.9206
	[.6394,3.247]	[.01567,.7914]	[.1322,6.512]	[.4449,1.895]
Total	100	100	100	100
Key: column pe [95% conf	rcentages idence intervals	for column per	centages]	
Pearson:				
Uncorrected	chi2(8)	= 16.4123		
Design-based	F(6.61, 5508.59)= 1.7975	P = 0.0877	

Figure 5-131: How often do G2 drivers operate vehicles with one or more teenage passengers?

Number of strata	= 20		Number of obs	= 853
Number of PSUs	= 853		Population siz	e = 199090.43
			Design df	= 833
How often do				
you drive with				
one or more				
teen passengers		classif	ication	
during G2?	BDE w/ T	BDE w/o	non-BDE	Total
Never	8.38	8.569	13.94	9.224
	[5.916,11.74]	[4.851,14.7]	[9.121,20.72]	[7.126,11.86]
Once	10.09	17.16	18.33	13.67
	[7.4,13.61]	[11.54,24.75]	[12.77,25.6]	[11.02,16.83]
Sometimes	26.59	35.41	28.19	29.83
	[22.25,31.43]	[27.74,43.9]	[21.61,35.87]	[26.18,33.77]
Often	29.83	20.76	18.26	25.1
	[25.28,34.82]	[14.99,28.03]	[13.1,24.88]	[21.83,28.69]
Very Often	25.11	18.1	21.28	22.17
	[20.84,29.92]	[12.54,25.43]	[15.35,28.71]	[19,25.71]
Total	100	100	100	100
IOCAL	100	100	100	100
Key: column pe	ercentages			
[95% cont	idence interval	s for column pe	ercentages]	
Pearson:				
Uncorrected	chi2(8)	= 28.9990		
Design-based	F(7.15. 5957.8	38) = 2.6812	P = 0.0085	

riving 185

Figure 5-132: Logistic regression

teen_passenger	rs_G2_reg : 0	=Not Often 1	=Often or	Very Ofte	n	
(running logi	con escimaci	on sampie)				
Survey: Logist	cic regression	n				
Number of stra Number of PSUs	ata = 5 =	20 853		Number of Population Design df F(3, Prob > F	obs = n size = 831) = =	853 199090.43 833 5.18 0.0015
teen_passe~g	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
classifica~n BDE w/ TD BDE w/o TD non-BDE	1.000 0.522 0.536	(base) 0.107 0.106	-3.160 -3.149	0.002	0.348 0.363	0.781 0.790
gender male female	1.000 0.974	(base) 0.165	-0.155	0.877	0.699	1.358
_cons	1.237	0.176	1.497	0.135	0.936	1.634
(running logit	: on estimati	on sample) n				
Number of stra Number of PSU:	ata = 5 =	20 853		Number of Population Design df F(3, Prob > F	obs = n size = 831) = =	853 199090.43 833 5.18 0.0015
teen_passe~g	Odds Ratio	Linearized Std. Err.	t	₽> t	[95% Conf.	Interval]
classifica~n BDE w/ TD BDE w/o TD non-BDE	1.917 1.000 1.027	0.395 (base) 0.249	3.160 0.109	0.002	1.280 0.638	2.872 1.654
gender male female	1.000 0.974	(base) 0.165	-0.155	0.877	0.699	1.358
_cons	0.645	0.128	-2.202	0.028	0.436	0.954

Figure 5-133: How often do G2 drivers run red lights?

Number of strata Number of PSUs	= 20 = 853	N P D	umber of obs opulation size esign df	= 853 = 199090.43 = 833
How often do you run red lights during G2?	BDE w/ T	classif BDE w/o	ication non-BDE	Total
Never	91.7 [88.24,94.21]	92.49 [85.96,96.12]	94.7 [89.93,97.28]	92.39 [89.74,94.4]
Once	5.814 [3.798,8.801]	5.666 [2.647,11.71]	5.3 [2.721,10.07]	5.691 [4.001,8.035]
Sometimes	1.802 [.7889,4.063]	1.842 [.4515,7.207]	0	1.563 [.7387,3.278]
Often	.2943 [.0412,2.07]	0	0	.1522 [.02134,1.077]
Very Often	.3926 [.0549,2.75]	0	0	.203 [.02846,1.433]
Total	100	100	100	100
Key: column pe [95% conf	rcentages idence intervals	for column perc	entages]	
Pearson: Uncorrected Design-based	chi2(8)	= 5.1401	P = 0.7793	

Figure 5-134: How often do G2 drivers pass other cars because it is exciting?

Number of strata Number of PSUs	= 20 = 853	N E I	Number of obs Population size Design df	= 853 = 199090.43 = 833
How often do you pass other cars because it is exciting during C22		classif	fication	Total
	BDE W/ I	BDE W/O		
Never	84.74 [80.5,88.2]	90.98 [84.86,94.78]	82.01 [74.72,87.55]	86.5 [83.52,89.01]
Once	7.903 [5.422,11.38]	4.381 [2.012,9.274]	8.791 [5.049,14.87]	6.821 [5.058,9.139]
Sometimes	5.531 [3.51,8.61]	3.866 [1.555,9.291]	6.551 [3.436,12.14]	5.104 [3.543,7.299]
Often	.9099 [.3235,2.532]	.4143 [.05792,2.899]	1.943 [.5617,6.496]	.8848 [.4227,1.843]
Very Often	.9135 [.3132,2.634]	.3556 [.04975,2.494]	.704 [.09811,4.869]	.693 [.295,1.619]
Total	100	100	100	100
Key: column pe [95% conf	rcentages idence intervals	for column perc	entages]	
Pearson: Uncorrected Design-based	chi2(8) F(7.13, 5935.52	= 9.6651)= 0.9537	P = 0.4645	

Figure 5-135: Logistic regression

passin (running logit	ngcars_G2_x : t on estimati	0=Never 1=A on sample)	At least (once		
Survey: Logist	tic regressio	n				
Number of stra	ata =	20		Number of	obs =	853
Number of PSU:	s =	853		Population	n size =	199090.43
				Design df	=	833
				F(7,	827) =	3.48
				Prob > F	=	0.0011
	I					
passingcar~x	Odds Ratio	Linearized Std. Err.	t	P> t	[95% Conf.	Interval]
BDE w/ TD	1.000	(base)				
BDE W/O TD	0 496	0 173	-2 013	0 044	0 250	0 983
DDE W/O ID	1 094	0.1/5	0 2015	0.776	0.200	1 000
HOH-BDE	1.084	0.307	0.204	0.776	0.021	1.092
gender						
male	1.000	(base)				
female	0.354	0.093	-3.936	0.000	0.211	0.595
ageyears						
16	1.000	(base)				
17	0.717	0.241	-0.989	0.323	0.371	1.387
18	1 238	0 438	0 603	0 547	0 618	2 479
19	1 035	0.370	0 097	0 923	0.513	2 088
19	1.035	0.370	0.097	0.925	0.515	2.000
num_postal~e						
Rural	1.000	(base)				
Urban	1.481	0.394	1.477	0.140	0.879	2.496
cons	0.214	0.077	-4.310	0.000	0.106	0.432
Survey: Logist Number of stra Number of PSUs	tic regressio ata = s =	n 20 853		Number of Population Design df	obs = n size = =	853 199090.43 833
				F(7, Prob > F	827) =	3.48 0.0011
		Linearized				
passingcar~x	Odds Ratio	Std. Err.	t	₽> t	[95% Cont.	Interval]
classifica~n						
BDE w/ TD	2.018	0.704	2.013	0.044	1.018	4.001
BDE w/o TD	1.000	(base)				
non-BDE	2.187	0.839	2.041	0.042	1.031	4.642
gender						
male	1.000	(base)				
female	0.354	0.093	-3.936	0.000	0.211	0.595
ageyears	1 000	(hege)				
10	1.000	(base)		0.000	0 0 0 0 0 0	
1.1	0.717	0.241	-0.989	0.323	0.371	1.387
18	1.238	0.438	0.603	0.547	0.618	2.479
19	1.035	0.370	0.097	0.923	0.513	2.088
num_postal~e						
Rural	1 000	(base)				
Urban	1.481	0.394	1.477	0.140	0.879	2.496
	1					
					_	
_cons	0.106	0.052	-4.560	0.000	0.040	0.279

Figure 5-136: How often do young drivers operate vehicles within 2 hours after consuming drugs other than alcohol?

Number of st:	rata = 20		Number of obs	= 853
Number of PS	Us = 853		Population size	= 199090.43
			Design df	= 833
	[
do drivo				
ud ulive				
bourg of				
aonguming				
consulting		alagaif	ightion	
during C22	BDF W/ TD	BDF W/O TD	TCACION NON BDF	Total
during Gz:	BDE W/ ID	BDE W/O ID	IIOII-BDE	IOCAI
Never	93.98	93.38	93.84	93.76
	[90.81,96.11]	[87.26,96.67]	[88.57,96.77]	[91.29,95.56]
Once	3.877	2.962	2.858	3.421
	[2.245,6.617]	[.9887,8.534]	[1.049,7.55]	[2.138,5.431]
Sometimes	1.2	3.345	2.309	2.09
	[.4216,3.365]	[1.283,8.434]	[.8452,6.149]	[1.117,3.878]
Often	.1326	.3126	.704	.2743
	[.04262,.4114]	[.04375,2.197]	[.09811,4.869]	[.09307,.8057]
Very Often	.8071	0	.2876	.4577
	[.2353,2.731]		[.04027,2.023]	[.147,1.416]
Total	100	100	100	100
Key: colu [95%	nn percentages confidence interva	als for column pe	rcentages]	
Pearson:				
Uncorrect	ted chi2(8)	= 8 2017		
Design-b	ased $F(6.04, 5035)$	(36) = 0.9124	P = 0.4852	
		, 0.9121		

Figure 5-137: How often do G2 drivers operate vehicles within 2 hours after consuming any amount of alcohol?

Number of str	ata = 20		Number of obs	= 853
Number of PSU	s = 853		Population size	= 199090.43
			Design df	= 833
How often				
do you				
drive				
within 2				
hours of				
consuming				
any amount				
of alcohol		classif	ication	
during	BDE w/ TD	BDE w/o TD	non-BDE	Total
Never	95.42	96.17	92.17	95.22
	[92.39,97.28]	[90.92,98.44]	[86.19,95.69]	[93.06,96.73]
Once	2.817	1.364	4.766	2.592
	[1.45,5.4]	[.2897,6.172]	[2.187,10.07]	[1.563,4.27]
Sometimes	.6868	2.155	2.831	1.49
	[.1683,2.759]	[.6255,7.154]	[1.009,7.684]	[.7057,3.12]
Often	.6876	.3126	.2323	.4953
	[.1685,2.762]	[.04375,2.197]	[.03254,1.638]	[.1645,1.481]
Very Often	.3926	0	0	. 203
	[.0549,2.75]			[.02846,1.433]
Total	100	100	100	100
Kev: colum	n percentages			
[95%	confidence interv	als for column pe	rcentages]	
Pearson:				
Uncorrect	ed chi2(8)	= 10.6427		
Design-ba	sed E(5.88.4900	95) = 1.1045	P = 0.3568	

Figure 5-138: How often do young drivers drive especially close to other cars to let its driver know to get out of the way?

Number of strata	= 20		Number of obs	= 853
Number of PSUs	= 853		Population size	
			Design df	= 833
How often do				
you drive				
especially				
close to the				
car in front to				
let its driver		classi	fication	
kn	BDE w/ T	BDE w/o	non-BDE	Total
Never	77.14	85.85	81.74	80.77
	[72.45,81.24]	[78.74,90.86]	[74.53,87.26]	[77.37,83.76]
Once	12.94	9.115	7.601	10.88
	[9.775,16.94]	[5.249,15.37]	[4.233,13.28]	[8.565,13.73]
Sometimes	6.562	4.566	7.004	5.94
	[4.359,9.766]	[1.986,10.15]	[3.715,12.82]	[4.247,8.251]
Often	2.061	.4672	1.619	1.453
	[.9211,4.548]	[.09728,2.213]	[.4376,5.806]	[.7608,2.758]
Very Often	1.296	0	2.031	.955
	[.5441,3.055]		[.7871,5.14]	[.4887,1.858]
Total	100	100	100	100
IULAI	100	100	100	100
l				
Key: Column pe [95% conf	rcentages idence intervals	for column per	centages]	
Pearson:				
Incorrected	chi2(8)	= 14 7335		
Design-based	F(6.77, 5639.75)= 1.5484	P = 0.1487	

Figure 5-139: Logistic regression

<pre>tailgait_G2_x : 0=Never 1=At least once (running logit on estimation sample)</pre>						
Survey: Logist	tic regressio	n				
Number of stra	ata =	20		Number of	obs =	. 853
Number of PSU:	s =	853		Populatic	n size =	199090.43
				Design df	=	833
				F(6,	828) =	2.04
				Prob > F	=	0.0584
		Linearized			[0.50 F C	
tailgait_G~x	Odds Ratio	Std. Err.	t	P> t	[95% Conf.	Interval]
classifica~n						
BDE w/ TD	1.000	(base)				
BDE w/o TD	0.503	0.145	-2.391	0.017	0.286	0.884
non-BDE	0.681	0.176	-1.486	0.138	0.410	1.131
gender						
male	1.000	(base)				
female	0.973	0.210	-0.127	0.899	0.637	1.486
ageyears						
16	1.000	(base)				
17	1.108	0.338	0.335	0.738	0.608	2.018
18	2.117	0.668	2.376	0.018	1.139	3.934
19	1.571	0.510	1.390	0.165	0.830	2.972
_cons	0.198	0.054	-5.933	0.000	0.116	0.338
(running logi	t on estimati	on sample)				
Survey: Logist	tic regressio	'n				
1 2	2					
Number of stra	ata =	20		Number of	obs =	853
Number of PSU:	s =	853		Populatic	on size =	: 199090.43
				Design df	=	833
				F(6,	828) =	2.04
				Prob > F	=	0.0584
tailgait Cur	Odda Datio	Std Err	+	D> +	[OF% Conf	Intervall
Laligalt_G~x	Odds Ratio	Sta. Err.	L	P> L	[95% CONT.	Intervalj
classifica~n						
BDE w/ TD	1.989	0.572	2.391	0.017	1.131	3.498
BDE w/o TD	1.000	(base)				
non-BDE	1.355	0.452	0.910	0.363	0.704	2.610
gender						
male	1.000	(base)				
female	0.973	0.210	-0.127	0.899	0.637	1.486
ageyears						
16	1.000	(base)				
17	1.108	0.338	0.335	0.738	0.608	2.018
18	2.117	0.668	2.376	0.018	1.139	3.934
19	1.571	0.510	1.390	0.165	0.830	2.972
cons	0.099	0.039	-5.833	0.000	0.046	0.216

Figure 5-140: What was the most important reason for deciding to take a BDE course?

Number of strata	a =	16		Number of obs	=	74
Number of PSUs	=	746		Population si	.ze = 1796	63.5
				Design df	=	73
What was the size						
important reago	for t	st king BDF2	nercentages	lb	ub	
	1 101 00	iking bbb:	percentages			
to qualify for	r insura	ance disc,	30.64	26.62	34.98	
to help pass	the gl	road test	4.387	2.865	6.662	
to be a safe	er/skil	led driver	34.11	30.04	38.42	
to get your g	g2 lice	nce sooner	18.18	15.29	21.48	
your pare	nts want	ted you to	4.221	2.648	6.663	
to be able to g	get to a	activities	8.312	6.219	11.03	
		other	.1573	.02204	1.113	
		Total	100			
					<u></u>	
Key: percenta	ages =	cell perc	entages			
lb	=	lower 95%	confidence bo	ounds for cell	percentages	
ub	=	upper 95%	confidence bo	ounds for cell	percentages	

Figure 5-141: What was the most important reason for deciding not to take a BDE course?

Number of strata = 8		Number of obs	= 24
Number of PSUs = 246		Population siz	e = 48020.36
		Design df	= 23
What was the main reason that			
you did not complete BDE?	percentages	lb	ub
too expensi	ve 34.22	27.98	41.07
not available where you li	ve 1.235	.4779	3.151
not necessa	ry 18.22	13.95	23.46
did not have ti	me 13.03	8.698	19.07
no access to a vehic	le 1.106	.2249	5.26
enrolled in BDE, never complet	ed .806	.1814	3.507
parents did not allow	it 1.683	.5215	5.291
not interested in time discou	nt 6.277	3.475	11.08
plan to take BDE lat	er 16.65	11.71	23.11
currently taking the cour	se 4.704	2.344	9.216
oth	er 2.065	.7834	5.333
Tot	al 100		
Key: percentages = cell p	ercentages		
lb = lower	95% confidence bo	ounds for cell p	ercentages
ub = upper	95% confidence bo	ounds for cell p	ercentages

Figure 5-142: Do young drivers think BDE improved their driving skills?

Number of strata	= 16		Number of obs	= 745
Number of PSUs	= 745		Population size	= 179640.87
			Design df	= 729
Did BDE improve				
vour driving				
skills?	percentages	lb	ub	
DATITD.	percentageb	10		
VAG	90 47	87 33	92 9	
yes	2 064	2 471	6 201	
110	3.904	2.4/1	0.301	
don't know	5.564	3.752	8.177	
Total	100			
			· · · · · · · · · · · · · · · · · · ·	
Key: percentag	ges = cell per	centages		
lb	= lower 95	& confidence bo	unds for cell pe	rcentages
ub	= upper 95	% confidence bo	unds for cell pe	rcentages

Figure 5-143: Do young drivers think BDE enhanced their knowledge of road rules and safety?

Number of strata	= 1	.6	Number o	f obs	= 7	745
Number of PSUs	= 74	15	Populati	on size	= 179640.	. 87
			Design d	lf	= 7	729
Did BDE improve						
knowledge of						
road rules and						
safety?	percentages	s lb	ub			
yes	95.52	93.04	97.15			
no	3.351	1.978	5.622			
don't know	1.128	.4541	2.773			
Total	100)				
	L					
Key: percentag	ges = cell	percentages				
lb	= lower	95% confidence	bounds for	cell perce	ntages	
ub	= upper	95% confidence	bounds for	cell perce	ntages	

Figure 5-144: What part of BDE do young drivers find most useful?

Number	of strata	=	16	Numbe	r of obs	=	745
Number	of PSUs	=	745	Popula	ation size	= 179	9640.87
				Desig	n df	=	729
What par course during	rt of the was most Gl stage?	BDE useful	percentages	lb	ub		
class	room inst	ruction	9.624	7.33	12.54		
in-veh	icle inst	ruction	89.94	86.95	92.31		
additi	onal inst	ruction	.4316	.09291	1.981		
		Total	100				
Key:	percenta	ges =	cell percentages				
	lb	=	lower 95% confide	ence bounds fo	or cell per	centages	3
	ub	=	upper 95% confide	ence bounds fo	or cell per	centages	3

Figure 5-145: Do young drivers take additional driving lessons outside of BDE?

Number of s	strata =	24	Number of obs	= 986
Number of H	PSUs =	986	Population size	= 226429.96
			Design df	= 962
	TT +- 1			
Classific	Have you tak	en nonBDE arivin	g lessons?	
ation	NO	Yes	Total	
BDE w/ T	92.3	7.702	100	
	[89.11,94.61]	[5.388,10.89]		
BDE w/o	92.65	7.355	100	
	[87.23,95.87]	[4.127,12.77]		
non-BDE	78.12	21.88	100	
	[72.32,82.98]	[17.02,27.68]		
Total	89.41	10.59	100	
	[87.04,91.38]	[8.616,12.96]		
Kev: rou	v percentages			
[9!	5% confidence in	tervals for row	percentages]	
Pearson:				
Uncorre	ected chi2(2)	= 35.6	759	
Design-	-based F(1.86,	1792.69)= 12.1	698 P = 0.0000	

Figure 5-146: Logistic regression

Number of stra	ata =	24		Number of	obs -	= 986
Number of PSU:	з =	986		Population	n size =	= 226429.96
				Design df	=	= 962
				F(б,	957) =	= 9.23
				Prob > F	=	= 0.0000
		Linearized				
nonBDE_les~s	Odds Ratio	Std. Err.	t	P> t	[95% Conf	. Interval]
classifica~n						
BDE w/ TD	0.212	0.057	-5.784	0.000	0.125	0.359
BDE w/o TD	0.186	0.067	-4.683	0.000	0.092	0.377
non-BDE	1.000	(base)				
gender						
male	1.000	(base)				
female	0.797	0.198	-0.915	0.360	0.490	1.297
agevears						
16	1.000	(base)				
17	4.147	2.024	2.914	0.004	1.591	10.807
18	3.279	1.616	2.409	0.016	1.246	8.626
19	6.479	3.099	3.907	0.000	2.535	16.563
_cons	0.105	0.046	-5.189	0.000	0.045	0.247

Figure 5-147: How convenient are the public transportation systems in young driver's area?

Number of strata =	24	Numb	er of obs	= 660
Number of PSUs =	660	Popu	= 176094.92	
		Desi	gn df	= 636
How convenient are				
the public				
transportation				
systems in your area		postalcode		
to use?	rural	urban	Total	
very convenient	10.63	21.67	20.81	
	[5.777,18.74]	[17.97,25.9]	[17.36,24.74]	
convenient	11.8	28.87	27.54	
	[6.055,21.73]	[24.64,33.49]	[23.61,31.86]	
somewhat convenient	31.98	33.56	33.44	
	[22.75,42.88]	[29.17,38.26]	[29.31,37.84]	
not convenient at al	37.64	12.16	14.14	
	[27.64,48.83]	[9.295,15.76]	[11.33,17.51]	
don't know / n/a	7 9/9	2 7 2 9	4 066	
	[3.782,15.94]	[2.34,5.922]	[2.691,6.098]	
Total	100	100	100	
Iotai	100	100	100	
Kew: column pergen				
[95% confiden	ce intervals for	column percent	ages]	
Pearson:				
Uncorrected chi	2(4) =	31.6217		
Design-based F(3	.92, 2495.70)=	11.0644 P	= 0.0000	

Figure 5-148: Logistic regression

Number of stra	ata =	24 622		Number of	obs =	622 168935 44
Number of 1900	-	022		Design df	=	598
				F(5.	594) =	5.96
				Prob > F	=	0.0000
		Linearized				
reg_transi~e	Odds Ratio	Std. Err.	t	P> t	[95% Conf.	Interval]
num_postal~e						
Rural	1.000	(base)				
Urban	4.897	1.437	5.416	0.000	2.753	8.713
gender						
male	1.000	(base)				
female	1.173	0.324	0.578	0.564	0.682	2.017
ageyears						
16	1.000	(base)				
17	0.896	0.373	-0.263	0.793	0.396	2.030
18	1.221	0.553	0.441	0.659	0.501	2.974
19	0.894	0.392	-0.254	0.799	0.378	2.116
cons	1 303	0 558	0 617	0 537	0 562	3 019
	1.303	0.550	0.01/	0.007	0.502	5.019

Figure 5-149: How often do young drivers take public transportation monthly?

Number of strata	= 24		Number of obs	= 659
Number of PSUs	= 659		Population size	= 175407.33
			Design df	= 635
			······	
How often do				
you take public				
transit,		postalcode		
monthly?	rural	urban	Total	
dailv	6.908	18.04	17.17	
	[3.326,13.8]	[14.5,22.22]	[13.89,21.05]	
several times p	6.162	17.9	16.98	
	[2.659,13.63]	[14.49,21.9]	[13.81,20.7]	
once per week	10.2	12.56	12.37	
	[4.743,20.58]	[9.657,16.17]	[9.634,15.75]	
once per month	9.925	19.41	18.67	
	[5.365,17.64]	[15.83,23.57]	[15.34,22.53]	
never	66.81	32.09	34.8	
	[55.71,76.3]	[27.82,36.69]	[30.75,39.09]	
Total	100	100	100	
Key: column pe [95% conf	rcentages idence interval	s for column pe	ercentages]	
Pearson:				
Uncorrected	chi2(4)	= 26.1985		
Design-based	F(3.80, 2413.9	9)= 9.9327	P = 0.0000	

Figure 5-150: Logistic regression

reg_frequency_ (running logit	_transit : 0= t on estimati	Less than on on sample)	ice per w	veek 1=At le	east once pe	r week		
Survey: Logistic regression								
Number of stra	ata -	24		Number of	obe -	659		
Number of PSUs	aca - 5 =	659		Populatio	onsize =	175407.33		
				Design df	=	635		
				F(5,	631) =	7.37		
				Prob > F	=	0.0000		
		Linearized						
reg_freque~t	Odds Ratio	Std. Err.	t	P> t	[95% Conf.	Interval]		
num_postal~e								
Rural	1.000	(base)						
Urban	3.061	0.923	3.709	0.000	1.693	5.535		
gender								
male	1.000	(base)						
female	0.646	0.128	-2.209	0.028	0.439	0.953		
ageyears								
16	1.000	(base)	0 480	0 014	0.050	0.061		
1/	0.484	0.142	-2.4/3	0.014	0.272	0.861		
19	1.526	0.330	1.430	0.153	0.854	2.028		
19	1.520	0.151	1.150	3.133	0.051	2.720		
_cons	0.384	0.142	-2.585	0.010	0.185	0.794		

Figure 5-151: How often do young drivers get rides from other drivers monthly?

Number of strata =	24	Number of	obs =	9
Number of PSUs =	959	Populatio	on size = 220	0441.
		Design df	=	93
How often do you get a				
ride from someone else,		postalcode		
monthly?	rural	urban	Total	
daily	8.463	12.01	11.37	
-	[5.797,12.2]	[9.449,15.16]	[9.183,13.99]	
several times per week	28.45	31.07	30.59	
	[23.17,34.38]	[27.03,35.42]	[27.12,34.29]	
once per week	29.19	31.37	30.97	
	[23.92,35.09]	[27.27,35.79]	[27.46,34.72]	
once per month	24.15	19.27	20.16	
	[19.2,29.89]	[15.97,23.06]	[17.27,23.39]	
never	9.754	6.275	6.909	
	[6.669,14.05]	[4.334,9.004]	[5.163,9.188]	
Total	100	100	100	
Key: column percentages			·····	
[95% confidence in	tervals for colu	mn percentages]		
Pearson:				
Uncorrected chi2(4)	= 6.3	157		
Design-based F(3.95,	3690.43)= 1.8	210 P = 0.1	228	

Figure 5-152: Logistic regression

<pre>reg_frequency_ride : 0=Less than once per week 1=At least once per week (running logit on estimation sample)</pre>								
Survey: Logistic regression								
Number of stra	ata =	24		Number of	obs	= 959		
Number of PSUs	5 =	959		Populatic	on size	= 220441.26		
				Design df	1	= 935		
				F(5,	931)	= 6.51		
				Prob > F		= 0.0000		
		Linearized						
reg_frequ~de	Odds Ratio	Std. Err.	t	P> t	[95% Conf	. Interval]		
num_postal~e								
Rural	1.000	(base)						
Urban	1.557	0.274	2.517	0.012	1.102	2.198		
gender								
male	1.000	(base)						
female	1.207	0.219	1.037	0.300	0.846	1.722		
ageyears	1 000	(1)						
16	1.000	(base)	2 506	0.000	0.000	0.000		
17	0.355	0.103	-3.586	0.000	0.202	0.626		
18	0.292	0.087	-4.119	0.000	0.162	0.525		
19	0.229	0.068	-4.934	0.000	0.128	0.412		
_cons	5.340	1.551	5.769	0.000	3.020	9.442		

Figure 5-153: How often in the average month do young drivers walk instead of driving as a mode of transportation?

Number of strate	a =	24		Number of obs	=	958
Number of PSUs	= 9	58		Population si	ze = 220	392.55
				Design df	=	934
					-	
How often do						
you walk as a						
mode of						
transporation,		postal	code			
monthly?	ru	ral	urban	Total		
					-	
daily	20	.39	32.9	30.62	1	
	[16,25.	62] [28.84.	37.241	[27.19.34.28]		
	,					
goveral times p	15	70	26 19	24 52	,	
severar crues p	[11 0 20	.74 631 [33 61	20.40	[21 25 20 1]		
	[11.0,20.	05] [22.01,	30.75]	[21.25,20.1]		
once per week	10	.88	11.5	11.39		
	[7.574,15	.4] [8.899,	14.74]	[9.135,14.11]		
once per month	7.	777	10.51	10.02	1	
	[5.126,11.	63] [8.075,	13.58]	[7.928,12.58]		
never	45	.23	18.61	23.46	;	
	[39.22,51.	39] [15.32,	22.41]	[20.5,26.7]		
Total		100	100	100		
10041		100	100	100	·	
					-	
Key: column p	percentages					
[95% co	nfidence inte	rvals for co	lumn per	centages]		
Pearson:						
Uncorrected	chi2(4)	= 58	.3051			
Design-base	d F(3.97, 37	04.53)= 17	.3794	P = 0.0000		
<u> </u>						
Figure 5-144	l ogistic r	earession	1			
Figure 5-144:	: Logistic r	egression	l			
Figure 5-144:	Logistic r	egression s than once	per weel	k 1=At least	once per we	eek
Figure 5-144:	walk : 0=Les	s than once	per wee	k 1=At least	once per we	eek
Figure 5-144: reg_frequency_ (running logit	walk : 0=Les	egression s than once on sample)	per weeł	k 1=At least	once per we	eek
Figure 5-144: reg_frequency_ (running logit	walk : 0=Les on estimati	egression s than once on sample)	per weeł	k 1=At least	once per we	eek
Figure 5-144: reg_frequency_ (running logit Survey: Logist	walk : 0=Les on estimati	egression s than once on sample) n	per wee	c l=At least	once per we	eek
Figure 5-144: reg_frequency_ (running logit Survey: Logist	walk : 0=Les on estimati	egression s than once on sample) n	per week	c 1=At least	once per we	eek
Figure 5-144: reg_frequency_ (running logit Survey: Logist	walk : 0=Les on estimati	egression s than once on sample) n	per wee	<pre>x 1=At least Number of</pre>	once per we	eek ore
Figure 5-144: reg_frequency_ (running logit Survey: Logist Number of stra	walk : 0=Les on estimati ic regressio	egression s than once on sample) n 24	per wee}	x l=At least Number of	once per we	eek 958
Figure 5-144: reg_frequency_ (running logit Survey: Logist Number of stra Number of PSUs	Logistic r walk : 0=Les on estimati ic regressio uta = = =	egression s than once on sample) n 24 958	per wee	x 1=At least Number of Populatior	once per we obs = 1 size =	958 220392.55
Figure 5-144: reg_frequency_ (running logit Survey: Logist Number of stra Number of PSUS	<pre>uvalk : 0=Les on estimati cic regressio ta = s =</pre>	egression s than once on sample) n 24 958	per wee	<pre>x l=At least Number of Population Design df</pre>	once per we obs = i size = =	958 220392.55 934
Figure 5-144: reg_frequency_ (running logit Survey: Logist Number of stra Number of PSUs	Logistic r walk : 0=Les on estimati tic regressio tta = s =	egression s than once on sample) n 24 958	per wee}	<pre>x 1=At least Number of Population Design df F(5)</pre>	once per we obs = size = e 2000 =	958 220392.55 934
Figure 5-144: reg_frequency_ (running logit Survey: Logist Number of stra Number of PSUs	<pre>Logistic r walk : 0=Les : on estimati ic regressio uta = ; =</pre>	egression s than once on sample) n 24 958	per wee	X 1=At least Number of Population Design df F(5,	once per we obs = 1 size = 930) =	958 220392.55 934 10.57
Figure 5-144: reg_frequency_ (running logit Survey: Logist Number of stra Number of PSUs	<pre>uwalk : 0=Les on estimati cic regressio ata =</pre>	egression s than once on sample) n 24 958	per wee	<pre>x l=At least Number of Populatior Design df F(5, Prob > F</pre>	once per we obs = 1 size = 930) = =	958 220392.55 934 10.57 0.0000
Figure 5-144: reg_frequency_ (running logit Survey: Logist Number of stra Number of PSUS	<pre>walk : 0=Les on estimati c regressio ta =</pre>	egression s than once on sample) n 24 958	per wee	Number of Population Design df F(5, Prob > F	once per we obs = 1 size = 930) = =	958 220392.55 934 10.57 0.0000
Figure 5-144: reg_frequency_ (running logit Survey: Logist Number of stra Number of PSUS	Logistic r walk : 0=Les on estimati ic regressio ta = = =	egression s than once on sample) n 24 958	per weeł	Number of Populatior Design df F(5, Prob > F	once per we obs = 1 size = 930) =	958 220392.55 934 10.57 0.0000
Figure 5-144: reg_frequency_ (running logit Survey: Logist Number of stra Number of PSUs	<pre>Logistic r walk : 0=Les : on estimati ic regressio uta = : = : =</pre>	egression s than once on sample) n 24 958	per wee}	X l=At least Number of Populatior Design df F(5, Prob > F	once per we obs = 1 size = 930) = =	958 220392.55 934 10.57 0.0000
Figure 5-144: reg_frequency_ (running logit Survey: Logist Number of stra Number of PSUs	<pre>uwalk : 0=Les on estimati cic regressio ta =</pre>	egression s than once on sample) n 24 958 Linearized	per wee	<pre>x 1=At least Number of Population Design df F(5, Prob > F</pre>	once per we obs = 1 size = 930) = =	958 220392.55 934 10.57 0.0000
Figure 5-144: reg_frequency_ (running logit Survey: Logist Number of stra Number of PSUS reg_freque~k	<pre>Logistic r walk : 0=Les : on estimati ic regressio uta = </pre>	egression s than once on sample) n 24 958 Linearized Std. Err.	per wee	Number of Populatior Design df F(5, Prob > F P> t	once per we obs = 1 size = 930) = [95% Conf.	958 220392.55 934 10.57 0.0000 Interval]
Figure 5-144: reg_frequency_ (running logit Survey: Logist Number of stra Number of PSUs reg_freque~k	<pre>Logistic r walk : 0=Les : on estimati ic regressio uta = ; = </pre>	egression s than once on sample) n 24 958 Linearized Std. Err.	per wee}	<pre>x l=At least Number of Population Design df F(5, Prob > F P> t </pre>	once per we obs = 1 size = 930) = = [95% Conf.	958 220392.55 934 10.57 0.0000 Interval]
Figure 5-144: reg_frequency_ (running logit Survey: Logist Number of stra Number of PSUs reg_freque~k num postalce	<pre>Logistic r walk : 0=Les on estimati ic regressio ta =</pre>	egression s than once on sample) n 24 958 Linearized Std. Err.	per week	<pre>x l=At least Number of Populatior Design df F(5, Prob > F P> t </pre>	once per we obs = 1 size = 930) = [95% Conf.	958 220392.55 934 10.57 0.0000 Interval]
Figure 5-144: reg_frequency_ (running logit Survey: Logist Number of stra Number of PSUS reg_freque~k num_postal~e	<pre>Logistic r walk : 0=Les : on estimati ic regressio uta = </pre>	egression s than once on sample) n 24 958 Linearized Std. Err.	per week	Number of Populatior Design df F(5, Prob > F P> t	once per we obs = 1 size = 930) = [95% Conf.	958 220392.55 934 10.57 0.0000 Interval]
Figure 5-144: reg_frequency_ (running logit Survey: Logist Number of stra Number of PSUs reg_freque~k num_postal~e Rural	<pre>Logistic r walk : 0=Les : on estimati ic regressio uta = ; = Odds Ratio 1.000</pre>	egression s than once on sample) n 24 958 Linearized Std. Err. (base)	per wee}	<pre>x l=At least Number of Population Design df F(5, Prob > F P> t P> t </pre>	once per we obs = 1 size = 930) = = [95% Conf.	958 220392.55 934 10.57 0.0000 Interval]
Figure 5-144: reg_frequency_ (running logit Survey: Logist Number of stra Number of PSUs reg_freque~k num_postal~e Rural Urban	<pre>Logistic r walk : 0=Les on estimati ic regressio ata =</pre>	egression s than once on sample) n 24 958 Linearized Std. Err. (base) 0.450	per week t	<pre>x 1=At least Number of Populatior Design df F(5, Prob > F P> t 0.000</pre>	once per we obs = 1 size = 930) = [95% Conf. 1.987	958 220392.55 934 10.57 0.0000 Interval]
Figure 5-144: reg_frequency_ (running logit Survey: Logist Number of stra Number of PSUS reg_freque~k num_postal~e Rural Urban	<pre>Logistic r walk : 0=Les : on estimati ic regressio uta =</pre>	egression s than once on sample) n 24 958 Linearized Std. Err. (base) 0.450	per week t	Number of Populatior Design df F(5, Prob > F P> t 0.000	once per we obs = 1 size = 930) = [95% Conf. 1.987	958 220392.55 934 10.57 0.0000 Interval] 3.783
Figure 5-144: reg_frequency_ (running logit Survey: Logist Number of stra Number of PSUs reg_freque~k num_postal~e Rural Urban	Logistic r walk : 0=Les on estimati ic regressio tta = ; = Odds Ratio	egression s than once on sample) n 24 958 Linearized Std. Err. (base) 0.450	per wee}	<pre>x 1=At least Number of Populatior Design df F(5, Prob > F P> t 0.000</pre>	once per we obs = 1 size = 930) = [95% Conf. 1.987	958 220392.55 934 10.57 0.0000 Interval]
Figure 5-144: reg_frequency_ (running logit Survey: Logist Number of stra Number of PSUS reg_freque~k num_postal~e Rural Urban gender	<pre>Logistic r walk : 0=Les : on estimati ic regressio ata =</pre>	egression s than once on sample) n 24 958 Linearized Std. Err. (base) 0.450	per week t	<pre>x l=At least Number of Populatior Design df F(5, Prob > F P> t 0.000</pre>	once per we obs = 1 size = 930) = [95% Conf. 1.987	958 220392.55 934 10.57 0.0000 Interval] 3.783
Figure 5-144: reg_frequency_ (running logit Survey: Logist Number of stra Number of PSUS reg_freque~k num_postal~e Rural Urban gender male	<pre>Logistic r walk : 0=Les : on estimati ic regressio uta =</pre>	egression s than once on sample) n 24 958 Linearized Std. Err. (base) 0.450 (base)	per wee	<pre>x l=At least Number of Populatior Design df F(5, Prob > F P> t 0.000</pre>	once per we obs = size = 930) = [95% Conf. 1.987	958 220392.55 934 10.57 0.0000 Interval] 3.783
Figure 5-144: reg_frequency_ (running logit Survey: Logist Number of stra Number of PSUS reg_freque~k num_postal~e Rural Urban gender male female	<pre>Logistic r walk : 0=Les : on estimati ic regressio uta = : = Odds Ratio 1.000 2.742 1.000 0.894</pre>	egression s than once on sample) n 24 958 Linearized Std. Err. (base) 0.450 (base) 0.155	t 6.149	<pre>x 1=At least Number of Population Design df F(5, Prob > F P> t 0.000 0.518</pre>	once per we obs = size = 930) = [95% Conf. 1.987	958 220392.55 934 10.57 0.0000 Interval] 3.783
Figure 5-144: reg_frequency_ (running logit Survey: Logist Number of stra Number of PSUS reg_freque~k num_postal~e Rural Urban gender male female	Logistic r walk : 0=Les on estimati ic regressio ta = s = Odds Ratio 1.000 2.742 1.000 0.894	egression s than once on sample) n 24 958 Linearized Std. Err. (base) 0.450 (base) 0.155	t 6.149 -0.647	<pre>x l=At least Number of Population Design df F(5, Prob > F P> t 0.000 0.518</pre>	once per we obs = 1 size = 930) = [95% Conf. 1.987 0.636	958 220392.55 934 10.57 0.0000 Interval] 3.783 1.256
Figure 5-144: reg_frequency_ (running logit Survey: Logist Number of stra Number of PSUS reg_freque~k num_postal~e Rural Urban gender male female	<pre>kuppistic r walk : 0=Les on estimati ic regressio uta =</pre>	egression s than once on sample) n 24 958 Linearized Std. Err. (base) 0.450 (base) 0.155	t 6.149 -0.647	<pre>x l=At least Number of Population Design df F(5, Prob > F P> t 0.000 0.518</pre>	once per we obs = size = 930) = [95% Conf. 1.987 0.636	958 220392.55 934 10.57 0.0000 Interval] 3.783 1.256
Figure 5-144: reg_frequency_ (running logit Survey: Logist Number of stra Number of PSUs reg_freque~k num_postal~e Rural Urban gender male female ageyears	<pre>Logistic r walk : 0=Les : on estimati ic regressio tta = ; = Odds Ratio 1.000 2.742 1.000 0.894</pre>	egression s than once on sample) n 24 958 Linearized Std. Err. (base) 0.450 (base) 0.155	t 6.149 -0.647	<pre>x 1=At least Number of Population Design df F(5, Prob > F P> t 0.000 0.518</pre>	once per we obs = size = 930) = [95% Conf. 1.987 0.636	958 220392.55 934 10.57 0.0000 Interval] 3.783 1.256
Figure 5-144: reg_frequency_ (running logit Survey: Logist Number of stra Number of PSUs reg_freque~k num_postal~e Rural Urban gender male female ageyears 16	<pre>Logistic r walk : 0=Les : on estimati ic regressio tta = </pre>	egression s than once on sample) n 24 958 Linearized Std. Err. (base) 0.450 (base) 0.155 (base)	t 6.149 -0.647	<pre>x l=At least Number of Population Design df F(5, Prob > F P> t 0.000 0.518</pre>	once per we obs = 1 size = 930) = [95% Conf. 1.987 0.636	958 220392.55 934 10.57 0.0000 Interval] 3.783 1.256
Figure 5-144: reg_frequency_ (running logit Survey: Logist Number of stra Number of PSUS reg_freque~k num_postal~e Rural Urban gender male female ageyears 16	<pre>Logistic r walk : 0=Les : on estimati ic regressio uta =</pre>	egression s than once on sample) n 24 958 Linearized Std. Err. (base) 0.450 (base) 0.155 (base)	t 6.149 -0.647	<pre>x l=At least Number of Population Design df F(5, Prob > F P> t 0.000 0.518 0.000</pre>	once per we obs = size = 930) = [95% Conf. 1.987 0.636	958 220392.55 934 10.57 0.0000 Interval] 3.783 1.256
Figure 5-144: reg_frequency_ (running logit Survey: Logist Number of stra Number of PSUs reg_freque~k num_postal~e Rural Urban gender male female ageyears 16 17	E Logistic r walk : 0=Les : on estimati ic regressio tta = ; = Odds Ratio 1.000 2.742 1.000 0.894 1.000 0.402	egression s than once on sample) n 24 958 Linearized Std. Err. (base) 0.450 (base) 0.155 (base) 0.199	t 6.149 -0.647 -3.715	<pre>x l=At least Number of Population Design df F(5, Prob > F P> t 0.000 0.518 0.000</pre>	once per we obs = size = 930) = [95% Conf. 1.987 0.636 0.248	958 220392.55 934 10.57 0.0000 Interval] 3.783 1.256 0.651
Figure 5-144: reg_frequency_ (running logit Survey: Logist Number of stra Number of PSUs reg_freque~k num_postal~e Rural Urban gender male female ageyears 16 17 18	ELOGISTIC r walk : 0=Les : on estimati ic regressio uta = = Odds Ratio 1.000 2.742 1.000 0.894 1.000 0.402 0.494	egression s than once on sample) n 24 958 Linearized Std. Err. (base) 0.450 (base) 0.155 (base) 0.099 0.130	t 6.149 -0.647 -3.715 -2.670	<pre>x 1=At least Number of Population Design df F(5, Prob > F P> t 0.000 0.518 0.000 0.008</pre>	once per we obs = 1 size = 930) = [95% Conf. 1.987 0.636 0.248 0.294	958 220392.55 934 10.57 0.0000 Interval] 3.783 1.256 0.651 0.830
Figure 5-144: reg_frequency_ (running logit Survey: Logist Number of stra Number of PSUS reg_freque~k num_postal~e Rural Urban gender male female ageyears 16 17 18 19	<pre>Logistic r walk : 0=Les on estimati ic regressio uta = = Odds Ratio 1.000 2.742 1.000 0.894 1.000 0.402 0.404 0.482 </pre>	egression s than once on sample) n 24 958 Linearized Std. Err. (base) 0.450 (base) 0.155 (base) 0.199 0.130 0.127	t 6.149 -0.647 -3.715 -2.670 -2.778	<pre>x 1=At least Number of Population Design df F(5, Prob > F P> t 0.000 0.518 0.000 0.008 0.006</pre>	once per we obs = size = 930) = [95% Conf. 1.987 0.636 0.248 0.294 0.288	958 220392.55 934 10.57 0.0000 Interval] 3.783 1.256 0.651 0.830 0.807
Figure 5-144: reg_frequency_ (running logit Survey: Logist Number of stra Number of PSUS reg_freque~k num_postal~e Rural Urban gender male female ageyears 16 17 18 19	ELOGISTIC r walk : 0=Les : on estimati ic regressio tta = ; = Odds Ratio 1.000 2.742 1.000 0.894 1.000 0.402 0.494 0.482	egression s than once on sample) n 24 958 Linearized Std. Err. (base) 0.450 (base) 0.155 (base) 0.155 (base) 0.127	t 6.149 -0.647 -3.715 -2.670 -2.778	<pre>x 1=At least Number of Population Design df F(5, Prob > F P> t 0.000 0.518 0.000 0.008 0.008 0.006</pre>	once per we obs = 1 size = 930) = [95% Conf. 1.987 0.636 0.248 0.294 0.288	958 220392.55 934 10.57 0.0000 Interval] 3.783 1.256 0.651 0.830 0.807
Figure 5-144: reg_frequency_ (running logit Survey: Logist Number of stra Number of PSUS reg_freque~k num_postal~e Rural Urban gender male female ageyears 16 17 18 19	ELOGISTIC r walk : 0=Les : on estimati ic regressio tta = 	egression s than once on sample) n 24 958 Linearized Std. Err. (base) 0.450 (base) 0.155 (base) 0.155 (base) 0.130 0.127	t 6.149 -0.647 -3.715 -2.670 -2.778	<pre>x 1=At least Number of Population Design df F(5, Prob > F P> t 0.000 0.518 0.000 0.008 0.006 2.004</pre>	once per we obs = 1 size = 930) = [95% Conf. 1.987 0.636 0.248 0.294 0.288	958 220392.55 934 10.57 0.0000 Interval] 3.783 1.256 0.651 0.830 0.807
Figure 5-144: reg_frequency_ (running logit Survey: Logist Number of stra Number of PSUS reg_freque~k num_postal~e Rural Urban gender male female ageyears 16 17 18 19 cons	<pre>Logistic r walk : 0=Les : on estimati ic regressio uta =</pre>	egression s than once on sample) n 24 958 Linearized Std. Err. (base) 0.450 (base) 0.155 (base) 0.155 (base) 0.130 0.127 0.478	t 6.149 -0.647 -3.715 -2.670 -2.778 2.468	<pre>x 1=At least Number of Population Design df F(5, Prob > F P> t 0.000 0.518 0.000 0.014</pre>	once per we obs = size = 930) = [95% Conf. 1.987 0.636 0.248 0.294 0.288 1.137	958 220392.55 934 10.57 0.0000 Interval] 3.783 1.256 0.651 0.830 0.807 3.091

Figure 5-155: How often in the average month do young drivers cycle instead of driving as a mode of transportation?

Number of strata	= 24		Number of obs	= 958
Number of PSUs	= 958		Population size	= 220392.55
			Design df	= 934
How often do				
you cycle as a				
mode of				
transporation,		postalcode		
monthly?	rural	urban	Total	
daily	.7283	2.022	1.786	
	[.2119,2.472]	[1.016,3.985]	[.9389,3.373]	
several times p	4.009	8.173	7.414	
	[2.194,7.213]	[5.92,11.18]	[5.514,9.901]	
once per week	6.012	6.687	6.564	
	[3.719,9.578]	[4.752,9.333]	[4.886,8.765]	
once per month	10.15	12.92	12.42	
	[6.835,14.8]	[10.09,16.42]	[9.98,15.35]	
never	79.11	70.19	71.82	
	[73.55,83.75]	[65.79,74.25]	[68.1,75.26]	
Total	100	100	100	
Key: column pe	ercentages			
[95% conf	idence interval	s for column pe	ercentages]	
Pearson:				
Uncorrected	chi2(4)	= 7.2443		
Design-based	F(3.92, 3661.0	5)= 2.2954	P = 0.0582	

Figure 5-156: Did young drivers visit MTO's website for information on licensing requirements before obtaining their G1 licence?

Number of strata	= 24		Number of obs	= 958
Number of PSUs	= 958		Population size	= 220392.55
			Design df	= 934
			5	
Betore				
obtaining your				
G1 did you				
visit MTO's				
website?	nercentages	lb	ub	
webbitee.	percentageb	10	ub	
	60 71	E0 07	66.20	
yes	02./1	50.07	00.39	
no	22.89	19.77	26.35	
don't know / do	14.4	11.91	17.31	
Total	100			
Vou: noncontor				
key. percentag	yes = cell per	centages		
lb	= lower 95	% confidence bou	unds for cell pe	rcentages
ub	= upper 95	% confidence bou	unds for cell pe	rcentages

Figure 5-157: Did young drivers visit MTO's website for required documentation related to licensing before obtaining their G1 licence?

Number of strata	=	24		Number	of obs	=	958
Number of PSUs	= 9	58		Populat	ion si	ze =	220392.55
				Design	df	=	934
Before G1 did							
you visit MTO							
for required							
doc?	percentage	s	lb	ub			
					-		
yes	6	4	60.26	67.58			
no	22.2	8	19.16	25.52			
don't know / do	13.8	2	11.44	16.61			
Total	10	0					
		-					
Key: percentag	ges = cell	perc	entages				
lb	= lowe	r 95%	confidence	bounds for	cell	percenta	iges
ub	= uppe	r 95%	confidence	bounds for	cell	percenta	iges

Figure 5-158: Have young drivers seen any of the available videos for young drivers listed on MTO's website entitled, "Getting your driver's licence"?

Number of strata	= 24	N	umber of obs	=	958
Number of PSUs	= 958	P	opulation siz	ze = 2	20392.55
		D	esign df	=	934
Have you seen					
any videos					
available for					
young drivers?	percentages	lb	ub		
<u></u>					
yes	23.64	20.47	27.14		
no	50.75	46.88	54.61		
don't know / do	25.61	22.31	29.21		
Total	100				
Key: percentag	ges = cell pe	rcentages			
lb	= lower 9	5% confidence boun	ds for cell p	percentag	es
ub	= upper 9	5% confidence boun	ds for cell p	percentag	es

Figure 5-159: Do young drivers visit MTO's website after passing the G1 road test and obtaining their G2 licence?

Number of strata	=	20		Number	of obs	=	845
Number of PSUs	=	845		Populat	ion siz	e =	197741.11
				Design (df	=	825
After passing							
Gl road test							
did you visit							
MTO's website?	percen	tages	lb	ub			
yes		14.37	11.7	17.53			
no		77.31	73.66	80.59			
don't know / do		8.319	6.321	10.87			
Total		100					
Key: percentag	ges =	cell perc	entages				
lb	=	lower 95%	confidence	bounds for	cell p	ercenta	ges
ub	=	upper 95%	confidence	bounds for	cell p	ercenta	ges
APPENDIX B: G1 QUESTIONNAIRE

Traffic Injury Research Foundation

Instructions

Grade 12

Thank you for the Traffic Inj Ministry of Tra completing th mail. This sur not to comple Your response analysis purp	agreeing to participate in this survey conducted by ury Research Foundation (TIRF) on behalf of Ontario's ansportation (MTO). To show our thanks for e questionnaire, we (TIRF) will send you \$10 in the vey of teen drivers is voluntary and you may choose te the questionnaire at any time during the process. es will be kept confidential. Results are aggregated for oses and will be used for research purposes only.
It should take questionnaire experiences a Ontario.	e you about 15 to 20 minutes to complete this . The questionnaire asks about your driving nd is part of a major study on driver education in
Please read e best of your k	ach section carefully and answer each question to the nowledge.
Part I: Backgro	ound Information
1. How old are y Years Months	ou:
2. Are you: Male Female	
3. What level of	schooling are you currently in:
Grade 9 Grade 10 Grade 11	 1st year college or Graduate school university 2nd year college or

university

university

university

3rd year college or

4th year college or

Traffic Injury Research Foundation 4. When did you get your G1 licence? Month: Year: 5. What are the first three characters of your postal code: [Example = AIA] Part II: Learning to Drive The following questions ask you about driver education and your experiences learning to drive. In Ontario, by taking a Ministry of Transportation, Ontario (MTO)-approved Beginner Driver Education (BDE) course, G1 licence holders may qualify for a four-month reduction in the 12-month minimum G1-licensing period (referred to as a 'time discount') as well as potential insurance rate discounts. 6. Have you COMPLETED an MTO-approved Beginner Driver Education (BDE) course in Ontario? Please note: Not all driving schools offer MTO-approved Beginner Driver Education (BDE) courses. S. I have completed Beginner Driver Education [GO TO Q7] No, I have not completed Beginner Driver Education [SKIP TO Q19 ON PAGE 5] 7. What was the name of the driving school you attended? 8. After you obtained your G1 licence, when did you enroll in the Beginner Driver Education (BDE) course? Month: Year:	
 4. When did you get your G1 licence? Month: Year: 5. What are the first three characters of your postal code: (Example = A1A) Part II: Learning to Drive The following questions ask you about driver education and your experiences learning to drive. In Ontario, by taking a Ministry of Transportation, Ontario (MTO)- approved Beginner Driver Education (BDE) course, G1 licence holders may qualify for a four-month reduction in the 12-month minimum G1-licensing period (referred to as a 'time discount') as well as potential insurance rate discounts. 6. Have you COMPLETED an MTO-approved Beginner Driver Education (BDE) course in Ontario? Please note: Not all driving schools offer MTO-approved Beginner Driver Education (BDE) courses. Yes, I have completed Beginner Driver Education [GO TO Q7] No, I have not completed Beginner Driver Education [SKIP TO Q19 ON PAGE 5] 7. What was the name of the driving school you attended? 8. After you obtained your G1 licence, when did you enroll in the Beginner Driver Education (BDE) course? Month: Year: Year: 	Traffic Injury Research Foundation
Month: Year: 5. What are the first three characters of your postal code: (Example = A1A) Part II: Learning to Drive Part II: Learning to Drive The following questions ask you about driver education and your experiences learning to drive. In Ontario, by taking a Ministry of Transportation, Ontario (MTO)-approved Beginner Driver Education (BDE) course, G1 licence holders may qualify for a four-month reduction in the 12-month minimum G1-licensing period (referred to as a 'time discount') as well as potential insurance rate discounts. 6. Have you COMPLETED an MTO-approved Beginner Driver Education (BDE) course in Ontario? Please note: Not all driving schools offer MTO-approved Beginner Driver Education (BDE) courses in Ontario? Please note: Not all driving schools offer MTO-approved Beginner Driver Education (BDE) courses.	4. When did you get your G1 licence?
Year: 5. What are the first three characters of your postal code: (Example = A1A) Part II: Learning to Drive The following questions ask you about driver education and your experiences learning to drive. In Ontario, by taking a Ministry of Transportation, Ontario (MTO)-approved Beginner Driver Education (BDE) course, G1 licence holders may qualify for a four-month reduction in the 12-month minimum G1-licensing period (referred to as a 'time discount') as well as potential insurance rate discounts. 6. Have you COMPLETED an MTO-approved Beginner Driver Education (BDE) course in Ontario? Please note: Not all driving schools offer MTO-approved Beginner Driver Education (BDE) courses. Yes, I have completed Beginner Driver Education [GO TO Q7] No, I have not completed Beginner Driver Education [SKIP TO Q19 ON PAGE 5] 7. What was the name of the driving school you attended? 8. After you obtained your G1 licence, when did you enroll in the Beginner Driver Education (BDE) course? Month: Year:	Month:
5. What are the first three characters of your postal code: (Example = A1A) Part II: Learning to Drive The following questions ask you about driver education and your experiences learning to drive. In Ontario, by taking a Ministry of Transportation, Ontario (MTO)-approved Beginner Driver Education (BDE) course, G1 licence holders may qualify for a four-month reduction in the 12-month minimum G1-licensing period (referred to as a 'time discount') as well as potential insurance rate discounts. 6. Have you COMPLETED an MTO-approved Beginner Driver Education (BDE) course in Ontario? Please note: Not all driving schools offer MTO-approved Beginner Driver Education (BDE) courses. Yes, I have completed Beginner Driver Education [GO TO Q7] No, I have not completed Beginner Driver Education [SKIP TO Q19 ON PAGE 5] 7. What was the name of the driving school you attended? 8. After you obtained your G1 licence, when did you enroll in the Beginner Driver Education (BDE) course? Month: Year:	Year:
Part II: Learning to Drive The following questions ask you about driver education and your experiences learning to drive. In Ontario, by taking a Ministry of Transportation, Ontario (MTO)-approved Beginner Driver Education (BDE) course, G1 licence holders may qualify for a four-month reduction in the 12-month minimum G1-licensing period (referred to as a 'time discount') as well as potential insurance rate discounts. 6. Have you COMPLETED an MTO-approved Beginner Driver Education (BDE) course in Ontario? Please note: Not all driving schools offer MTO-approved Beginner Driver Education (BDE) courses. Yes, I have completed Beginner Driver Education [GO TO Q7] No, I have not completed Beginner Driver Education [SKIP TO Q19 ON PAGE 5] 7. What was the name of the driving school you attended? 8. After you obtained your G1 licence, when did you enroll in the Beginner Driver Education (BDE) course? Month: Year:	5. What are the first three characters of your postal code: (Example = A1A)
The following questions ask you about driver education and your experiences learning to drive. In Ontario, by taking a Ministry of Transportation, Ontario (MTO)-approved Beginner Driver Education (BDE) course, G1 licence holders may qualify for a four-month reduction in the 12-month minimum G1-licensing period (referred to as a 'time discount') as well as potential insurance rate discounts. 6. Have you COMPLETED an MTO-approved Beginner Driver Education (BDE) course in Ontario? Please note: Not all driving schools offer MTO-approved Beginner Driver Education (BDE) courses.	Part II: Learning to Drive
In Ontario, by taking a Ministry of Transportation, Ontario (MTO)- approved Beginner Driver Education (BDE) course, G1 licence holders may qualify for a four-month reduction in the 12-month minimum G1-licensing period (referred to as a 'time discount') as well as potential insurance rate discounts. 6. Have you COMPLETED an MTO-approved Beginner Driver Education (BDE) course in Ontario? Please note: Not all driving schools offer MTO-approved Beginner Driver Education (BDE) courses. Yes, I have completed Beginner Driver Education [GO TO Q7] No, I have not completed Beginner Driver Education [SKIP TO Q19 ON PAGE 5] 7. What was the name of the driving school you attended? 8. After you obtained your G1 licence, when did you enroll in the Beginner Driver Education (BDE) course? Month: Year:	The following questions ask you about driver education and your experiences learning to drive.
 6. Have you COMPLETED an MTO-approved Beginner Driver Education (BDE) course in Ontario? Please note: Not all driving schools offer MTO-approved Beginner Driver Education (BDE) courses. Yes, I have completed Beginner Driver Education [GO TO Q7] No, I have not completed Beginner Driver Education [SKIP TO Q19 ON PAGE 5] 7. What was the name of the driving school you attended? 8. After you obtained your G1 licence, when did you enroll in the Beginner Driver Education (BDE) course? Month: Year: 	In Ontario, by taking a Ministry of Transportation, Ontario (MTO)- approved Beginner Driver Education (BDE) course, G1 licence holders may qualify for a four-month reduction in the 12-month minimum G1-licensing period (referred to as a 'time discount') as well as potential insurance rate discounts.
Please note: Not all driving schools offer MTO-approved Beginner Driver Education (BDE) courses. Yes, I have completed Beginner Driver Education [GO TO Q7] No, I have not completed Beginner Driver Education [SKIP TO Q19 ON PAGE 5] 7. What was the name of the driving school you attended? 8. After you obtained your G1 licence, when did you enroll in the Beginner Driver Education (BDE) course? Month: Year:	6. Have you COMPLETED an MTO-approved Beginner Driver Education (BDE) course in Ontario?
 Yes, I have completed Beginner Driver Education [GO TO Q7] No, I have not completed Beginner Driver Education [SKIP TO Q19 ON PAGE 5] 7. What was the name of the driving school you attended? 8. After you obtained your G1 licence, when did you enroll in the Beginner Driver Education (BDE) course? Month: Year: 	Please note: Not all driving schools offer MTO-approved Beginner Driver Education (BDE) courses.
No, I have not completed Beginner Driver Education [SKIP TO Q19 ON PAGE 5] 7. What was the name of the driving school you attended? 8. After you obtained your G1 licence, when did you enroll in the Beginner Driver Education (BDE) course? Month: Year:	Yes, I have completed Beginner Driver Education [GO TO Q7]
7. What was the name of the driving school you attended? 8. After you obtained your G1 licence, when did you enroll in the Beginner Driver Education (BDE) course? Month: Year:	No, I have not completed Beginner Driver Education [SKIP TO Q19 ON PAGE 5]
8. After you obtained your G1 licence, when did you enroll in the Beginner Driver Education (BDE) course? Month: Year:	7. What was the name of the driving school you attended?
Driver Education (BDE) course? Month: Year:	8. After you obtained your G1 licence, when did you enroll in the Beginner
Year:	Driver Education (BDE) course?
Year:	Month:
	Year:

Traffic Injury Resea	arch Foundatio	ิท
9. Did the course inclu	ide:	
Classroom	Yes	No
Instruction		
In-vehicle Instruction		
Additional Instruction (e.g., computer based, driving simulation, or home-links)		
10. Why did you decid (select all that apply)	le to take the Beg	jinner Driver Education (BDE) course?
To qualify for an ins	surance discount	To get your G2 licence sooner
To help pass the G	l road test	Your parents wanted you to
🗌 To make you a safe driver	r or more skilled	To be able to get to activities such as work, school, or sports on your own
🗌 Other (please speci	fy)	
11. Of these reasons, select one answer ON	which was the si ILY)	ngle most important reason? (Please
To qualify for an ins	surance discount	To get your G2 licence sooner
To help pass the G	1 road test	Your parents wanted you to
🗌 To make you a safe driver	r or more skilled	To be able to get to activities such as work, school, or sports on your own
Other (please speci	fy)	
12. Did Beginner Drive	er Education (BDE	i) improve your driving skills?
🗌 Yes		
🗌 No		
🗌 Don't know		

Page 3

ules and safety?	(,			201720-030-70-770-770-770-
Yes					
No					
Don't know					
14. What part of the Be useful during your G1 li	ginner Drive cence stage	r Educatio ? (Please s	on (BDE) co select only	ourse was one respo	the most nse)
Classroom Instruction	n				
In-vehicle Instruction	()				
Additional Instruction links)	i (e.g., compu	iter based,	, driving sin	nulation, o	r home-
Please explain why this	was the case	:			
		1			
Yes No [SKIP TO Q17] 6. Please rate your dri ducation (BDE) on a se	ving abilities cale from ve	BEFORE y	/ou enrolle verv good	d in Begin for the fol	ner Driver Ilowina
Yes No [SKIP TO Q17] L6. Please rate your dri Education (BDE) on a so	ving abilities cale from ve	BEFORE y	you enrolle very good	d in Begin for the fol	ner Driver llowing
Yes No [SKIP TO Q17] L6. Please rate your dri Education (BDE) on a se activities: Merging into traffic safely	ving abilities cale from ver Very Poor	BEFORE y ry poor to Poor	you enrolle very good Fair	d in Begin for the fol Good	ner Driver llowing Very Good
Yes Yes No [SKIP TO Q17] Gucation (BDE) f KIP TO Q17] Yes Gucation (BDE) on a second s	ving abilities cale from ver Very Poor	BEFORE y ry poor to Poor O	you enrolle very good Fair O	d in Begin for the fol Good O	ner Driver llowing Very Good
Yes Yes No [SKIP TO Q17] C. Please rate your dri Education (BDE) on a seactivities: Merging into traffic safely Making left turns at an intersection Passing other cars safely	ving abilities cale from ver Very Poor	BEFORE y ry poor to Poor O	you enrolle very good Fair O O	d in Begin for the fol Good O	ner Driver llowing Very Good
Yes Yes No [SKIP TO Q17] Content of the second seco	ving abilities cale from ver Very Poor O O O	BEFORE y ry poor to Poor O O O	you enrolle very good Fair O O O	d in Begin for the fol Good O O	ner Driver llowing Very Good O O

Traffic Injury	Research	Foundation	
----------------	----------	------------	--

17. Please rate your driving abilities AFTER you completed Beginner Driver Education (BDE) on a scale from very poor to very good for the following activities:

Merging into traffic	Very Poor	Poor	Fair	Good	Very Good	
safely	U	U	U	0	U	
Making left turns at an intersection	0	0	0	0	0	
Passing other cars safely	0	0	0	0	0	
Knowing who has the right of way on the road	d O	0	0	0	0	
Vehicle handling (e.g., steering, deceleration and braking, speed control)	0	0	0	0	0	
18. Do you plan on get period of driving with y discount?) Yes No SKIP TO O22 on PAGE	 18. Do you plan on getting your G2 licence before the minimum 12-month period of driving with your G1 licence? (i.e., do you plan on taking the time discount?) Yes No 					
19. What were the mai Education (BDE) cours	in reasons the e? (select all	at you did that apply	not comple /)	ete a Begiı	nner Driver	
Too expensive		D Pa to tak	rents/guard e it	lians did no	ot allow you	
 Not available where you live Not necessary - Others could teach you just as well to take it Not interested in getting a time discount (i.e., reducing the amount of time with a G1 licence) 					a time amount of	
Did not have time to course	take the	D Pla future	inning on ta	king the co	ourse in the	
Did not have access Enrolled in the cours completed it	to a vehicle e but never	Cu Ot	rrently takir her	ng the cour	se	

Traffic Injury Researc	h Foundat	tion			
20. Of these reasons, which was the single most important reason? Too expensive Parents/guardians did not allow you to take it Not available where you live Not necessary - Others could teach you just as well Did not have time to take the course Planning on taking the course in the future Did not have access to a vehicle Currently taking the course Did not have access to a vehicle Other					
21. Please rate your drivities	ing abilities	on a scal	e from very	poor to ve	ery good on
the following activities:	Very Poor	Poor	Fair	Good	Very Good
Merging into traffic safely	Ö	0	0	0	Õ
Making left turns at an intersection	0	0	0	0	0
Passing other cars safely	0	0	0	0	0
Knowing who has the right of way on the road	0	0	0	0	0
Vehicle handling (e.g., steering, deceleration and braking, speed control)	0	0	0	0	0
22. Have you taken any driving lessons from a professional instructor or school, which were not part of Ministry of Transportation, Ontario's Beginner Driver Education (BDE) course? Yes No [SKIP TO Q26 ON PAGE 7]					
23. In these driving less	ons, how ma	ny hours	were:		
In-vehicle Hours	were				
driving		_			
a passenger and the instru or another student was dri	were ictor ving				

Traffic Injury Research Foundat	ion
24. Did these lessons improve your dr	iving skills?
Yes	
No No	
Don't know	
25. Did these lessons enhance your k	nowledge of road rules and safety?
Yes	
No	
Don't know	
Part III: G1 Licence Stage	
The following questions ask abo learning to drive with a G1 licer	out the amount of supervision when ice.
As a reminder: Your responses aggregated for analysis purpose purposes only.	will be kept confidential. Results are es and will be used for research
26. Who is the supervising driver mos	st often when you are driving?
Please note: a supervising driver is a years of driving experience.	fully licensed driver who has at least four
Mother 🗌	Friend
🗌 Father	Driving Instructor
Older Sibling	Drove Alone
Other Relative	Did not drive during this period [If you did not drive, SKIP TO Q29]
Other (please specify)	

Page 7

Traffic Injury Research Foundation
27. In an average month, how often do you drive on public roads without
\square Once per month
Once per week
Several times per week
Almost every day or every day
28. In an average month, how many hours of supervised driving practice do you have?
0-10 Hours
11-20 Hours
21-30 Hours
31-40 Hours
41-50 Hours
51+ Hours
Part IV: Vehicles
The following section relates to the characteristics of the vehicle(s) which you currently drive most often.
29. Do you have unlimited use of a motor vehicle?
Yes
No
30. Who owns the vehicle you drive most often?
You Friend
Your parents/guardian Other
Other family member

212 The knowledge source for safe driving

Traffic Injury Research Foundation	ก
31. What type of vehicle do you drive r	nost often?
Car Car	Pick-up truck
Minivan/Family van	Motorcycle
Sport Utility Vehicle (SUV)	
Other (please specify)	
32. How many vehicles do you have ac option ONLY)	cess to drive? (please choose one
Do not have access to a vehicle	3
	4+
2	
33. Who pays for the costs of the vehic repairs, maintenance)? (check all that	cle you drive most often (i.e., insurance,
☐ You	Friend
 Vour parents/guardian	☐ Other
Other family member	- HVB SHIRA SERV
34. Who have for the day you use whe	you are driving? (check all that apply)
Vour parents/quardian	
Other family member	
Part V: Driving Behaviours	
The following section asks about	where, when, and how you drive.
As a reminder: Your responses w aggregated for analysis purposes purposes only.	ill be kept confidential. Results are s and will be used for research

35. This question asks about when you were driving with a G1 licence.

Please answer to the best of your recollection.

During an average month, how often do you:

	Never (0 times per month)	Once (1 time per month)	Sometimes r (2-3 times (per month) r	Often 4-12 times per month)	Very often (12+ times per month)
Drive on a 400 series highway	0	0	0	0	0
Drive downtown on urban streets	0	0	0	0	0
Drive in the country on rural roads	0	0	0	0	0
Drive at night	0	0	0	0	0
Wear a seat belt	0	0	0	0	0
Drive for longer than 3 hours in one trip	0	0	0	0	0
Drive during rush hour	0	0	0	0	0
Drive at least 10 km/hr over the posted speed limit	0	0	0	0	0
Drive in adverse weather conditions	0	0	0	0	0
Send or receive text messages with a hand- held phone while driving	0	0	0	0	0
Send or receive text messages with a hands-free device while driving	0	0	0	0	0
Make or receive phone calls with a hand-held phone while driving	0	0	0	0	0
Make or receive phone calls with a hands-free device while driving	0	0	0	0	0
Drive while listening to music	0	0	0	0	0
Drive while tired	0	0	0	0	0

Traffic Injury Resea	rch Founda	ation			
36. Some people drive	every day; so	ome only d	rive a few o	days each i id you driv	month. e?
Days:	- pase month	,	,,		
If you did not drive at a	ll in the past	month, pla	ease skip to	Q38.	
37. In the past month,	how often ha	ave you dri	iven:		
	Never (0 times (Once 1 time per	Sometimes (2-3 times (Often 4-12 times	Very often (12+ times
	per month)	month)	per month)	per month)	per month)
To get to and from school	0	0	0	0	0
To get to and from work	< O	0	0	0	0
As part of your job	0	Q	Q	0	0
To transport your parents or siblings	0	0	0	0	0
For recreational or social activities (e.g., to/from: the shopping mall; a friend's home; a movie theater or restaurant)	0	0	0	0	0
To practice driving	0	0	0	0	0
Just to go for a drive	0	0	0	0	0
38. On average, how m	any kilometr	es (km) de	o you drive	each mont	:h?
🗌 Less than 100 km pe	r month				
🗌 Between 100-500 km	n per month				
🗌 Between 501-1000 k	m per month				
More than 1000 km p	per month				
In addition to your selected range above, if you know the exact number of kilometres (km) you drive per month, please specify:					
This section asks you about your parents'/guardians' influence on your driving.					

Traffic Injury Resear	ch Foundation		
39. Do your parents/gu	ardian restrict the	hours which you a	re allowed access
40. Do you have a curfe parents/guardians (i.e. in the evening)?	w when you are d , an agreed upon t	riving set by your time when you nee	d to be home by
 □ No			
41. How many teenage have in the vehicle?	passengers do you	ur parents/guardia	in allow you to
0]4+	
1] Don't know / Neve	r asked
2] Have not driven wi	ith a G1 licence
3	γe	۶C.	
42. How many times has safety and the rules of t	ve your parents/g the road?	uardian talked to y	ou about traffic
Never			
Once or twice			
Several times			
43. Have your parents/	guardian ever talk	ed to you about:	Ne
Drinking and	res		
driving?			
Texting and driving?			
Distracted driving, other than texting and driving?			
Part VII: Alternatives	to Driving		
This section asks you about possible alternatives to driving, including the availability of public transportation where you live.			

Traffic Injury Research Foundation
44. Is there public transportation where you live (i.e., buses, trains, subway, light rail, taxis)?
Yes
No [SKIP TO Q47]
45. How convenient are the public transportation systems in your area to use?
Very convenient
Convenient
Somewhat convenient
Not convenient at all
Don't know / N/A
46. In the average month, how often do you take public transportation?
Daily
Several times per week
Once per week
Once per month
Never
47. In the average month, how often do you get a ride from someone else instead of driving yourself?
Daily
Several times per week
Once per week
Once per month
Never
48. In the average month, how often do you walk as a mode of transportation - even if this is to get to and from a bus stop?
Daily
Several times per week
Once per week
Once per month
Never

Traffic Injury Re	search Founda	ition		
49. In the average transportation - ev	e month, how ofte ven if this is to ge	n do you cycle as a n t to and from a bus st	node of op?	
🗌 Daily				
Several times p	er week			
Once per week				
Once per month				
Never 🗌				
Part VIII: Drivin The following q	g Programs and uestions ask yo	d Resources ou about your know	wledge of various	
Transportation.	esources onere	ed by Ontario's Mil		
50. Before obtainin Transportation we	ng your G1 licence bsite for informat	e, did you visit Ontario tion on:	o's Ministry of	
-	Yes	Νο	Don't know / Don't remember	
Licensing requirements				
Required documentation				
 51. Have you seen any of the videos available for young drivers listed on Ontario's Ministry of Transportation website entitled, "Getting your driver's licence"? Yes No Don't know / Don't remember 				
52. What is today's date? DD MM YYYY Today's / / / / / / / / / / / / / / / / / / /				

Thank you for your help. Your time and participation is greatly appreciated. When you are finished please place this questionnaire in the prepaid envelope we have provided you with and mail it back to us.

In order to receive your \$10 please fill out the information card provided and place it in the second pre-paid envelope to mail back to us separately from the questionnaire. If you have any questions or concerns, please feel free to contact the Traffic Injury Research Foundation by mail, telephone, or email at:

Traffic Injury Research Foundation 171 Nepean Street, Suite 200 Ottawa, Ontario K2P 0B4 Email: tirf@tirf.ca Telephone: 1-613-238-5235 Toll Free: 1-877-238-5235

APPENDIX C: G2 QUESTIONNAIRE

Traffic Injury Research Foundation

Instructions

Thank you fo the Traffic In Ministry of Tr completing the mail. This sur not to comple Your response analysis purp	r agreeing to participa ijury Research Founda ransportation (MTO). he questionnaire, we (rvey of teen drivers is ete the questionnaire ses will be kept confid poses and will be used	ate in this survey ition (TIRF) on be Fo show our thank (TIRF) will send y voluntary and you at any time during ential. Results are for research purp	conducted by half of Ontario's (s for ou \$10 in the u may choose g the process. aggregated for poses only.
It should tak questionnaire experiences Ontario.	e you about 15 to 20 r e. The questionnaire a and is part of a major	ninutes to comple sks about your dr study on driver ee	te this iving ducation in
Please read e best of your l	each section carefully knowledge.	and answer each	question to the
Part I: Backgr	ound Information		
1. How old are Years Months	you:		
2. Are you: Male Female			
3. What level of	schooling are you curren	tly in:	
Grade 9 Grade 10 Grade 11 Grade 12	 1st year coluniversity 2nd year coluniversity 3rd year coluniversity 4th year coluniversity 	lege or Gradu Gradu Ilege or Ilege or	uate school n school

Traffic Injury Research Foundation
9. Did the course include:
Yes No Classroom Instruction
10. Why did you decide to take the Beginner Driver Education (BDE) course? (select all that apply)
To qualify for an insurance discount To get your G2 licence sooner To help pass the G1 road test Your parents wanted you to To make you a safer or more skilled driver To be able to get to activities such as work, school, or sports on your own
Other (please specify)
11. Of these reasons, which was the single most important reason? (Please select one answer ONLY)
 To qualify for an insurance discount To qualify for an insurance discount To help pass the G1 road test Your parents wanted you to To make you a safer or more skilled driver To be able to get to activities such as work, school, or sports on your own Other (please specify)
 12. Did Beginner Driver Education (BDE) improve your driving skills? Yes No Don't know
 13. Did Beginner Driver Education (BDE) enhance your knowledge of road rules and safety? Yes No Don't know
Dece 2

223

raffic Injury Research Foundation					
14. What part of the Beginner Driver Education (BDE) course was the most					
Additional Instruction (links)	e.g., comp	uter based	, driving sim	nulation, or	home-
Please explain why this w	as the case	:			
	2	-			
	1	-			
15. Did you drive with yo	ur G1 licen	ce prior to	enrolling in	n Beginner	Driver
Education (BDE)?					
Yes					
No [SKIP TO Q17]					
16. Please rate your drivi	ng abilities	BEFORE	ou enrolle	l in Begini	ner Driver
Education (BDE) on a sca activities:	ale from ve	ry poor to	very good	for the fol	lowing
	Very Poor	Poor	Fair	Good	Very Good
Merging into traffic safely	0	0	0	0	0
Making left turns at an intersection	0	0	0	0	0
Passing other cars safely	0	0	0	0	0
Knowing who has the right of way on the road	0	0	0	0	0
Vehicle handling (e.g., steering, deceleration and braking, speed control)	0	0	0	0	0

17. Please rate your driving abilities AFTER you completed Beginner Driver Education (BDE) on a scale from very poor to very good for the following activities:

	Very Poor	Poor	Fair	Good	Very Good
Merging into traffic safely	0	0	0	0	0
Making left turns at an intersection	0	0	0	0	0
Passing other cars safely	0	0	0	0	0
Knowing who has the right of way on the road	0	0	0	0	0
Vehicle handling (e.g., steering, deceleration and braking, speed control)	0	0	0	0	0
18. For how many mont G2 licence?	hs did you h	old your G	61 licence b	efore obta	ining your
Less than 12 months,	, I obtained a	a time disc	ount [SKIP	то Q 23]	
Greater than or equal to 12 months, I <u>did not</u> obtain a time discount [GO TO Q19]					
19. Why didn't you obtain a time discount?					
Did not complete the course early enough to obtain a time discount					
Completed the course in time, but did not take the G1 road test until after 12 months					
Completed the course in time, but could not schedule a road test in time to obtain time discount					
Did not pass the G1 r	oad test righ	t away			
Completed the course in time, but parents/ guardians did not allow you to obtain time discount					
Other (please specify)					
SKIP TO Q23 NOW					

Page 5

The knowledge source for safe driving

Traffic Injury Researc	h Foundat	ion				
20. What were the main Education (BDE) course?	reasons that (select all t	: you did hat apply	not comple /)	ete a Begir	nner Driver	
Too expensive		🗌 Pa	rents/guard	ians did no	t allow you	
Not available where yo	u live	to tak	e it			
Not necessary - Others you just as well	could teach	discou discou	t interested int (i.e., red with a G1 lic	in getting lucing the a ence)	a time amount of	
Did not have time to ta course	ake the	D Pla	inning on ta	king the co	ourse in the	
Did not have access to	a vehicle		rrently takin	a the cour	50	
Enrolled in the course t completed it	out never		her		30	
21. Of these reasons, wh	ich was the	single m	ost importa	int reason	?	
Too expensive		🗌 Pa	rents/guard	ians did no	t allow you	
Not available where yo	u live	to tak	to take it			
Not necessary - Others could teach you just as well			Not interested in getting a time discount (i.e., reducing the amount of time with a G1 licence)			
Did not have time to ta	ake the		onning on ta	king the co	urse in the	
course		future	future			
		Cu	Currently taking the course			
Enrolled in the course but never completed it		Ot	Other			
22. Please rate your driving abilities on a scale from very poor to very good on the following activities:						
, \	/ery Poor	Poor	Fair	Good	Very Good	
Merging into traffic safely	0	0	0	0	0	
Making left turns at an intersection	0	0	0	0	0	
Passing other cars safely	0	0	0	0	0	
Knowing who has the right of way on the road	0	0	0	0	0	
Vehicle handling (e.g., steering, deceleration and braking, speed control)	0	0	0	0	0	

Traffic Injury Research Foundation
23. Have you taken any driving lessons from a professional instructor or school, which were not part of Ministry of Transportation, Ontario's Beginner Driver Education (BDE) course?
Yes No [SKIP TO Q27 ON PAGE 8]
24. In these driving lessons, how many hours were:
In-vehicle Hours when you were
In-vehicle Hours when you were a passenger and the instructor or another student was driving
25. Did these lessons improve your driving skills?
Don't know
26. Did these lessons enhance your knowledge of road rules and safety?
Don't know
Part III: G1 Licence Stage
The following questions ask about the amount of supervision when learning to drive with a G1 licence. Please think about the time when you had a G1 driver's licence.
As a reminder: Your responses will be kept confidential. Results are aggregated for analysis purposes and will be used for research purposes only.

Traffic Injury Research Foun	dation	
27. With your G1 licence, who was the supervising driver most often when		
you were unving!		
Please note: a supervising driver vears of driving experience.	is a fully licensed driver who has at least four	
Mother	Friend	
Father	Driving Instructor	
Older Sibling	Drove Alone	
Other Relative	Did not drive during this period [If	
	you did not drive, SKIP TO Q30]	
Other (please specify)		
28. With your G1 licence, in an av public roads without having a sup	verage month, how often did you drive on vervising driver?	
Never/Rarely		
Once per month		
Once per week		
Several times per week		
Almost every day or every day		
29. In an average month, how ma you have during your G1 licence p	any hours of supervised driving practice did period?	
0-10 Hours		
11-20 Hours		
21-30 Hours		
31-40 Hours		
41-50 Hours		
51+ Hours		
30. After obtaining your G2 licence	e did you still get more supervised practice?	
Yes		
No [SKIP TO Q32]		

228 The knowledge source for safe driving

Traffic Injury Research Foundat	on
31. In an average month, how many l you had during your G2 licence period	nours of supervised driving practice have ?
1-10 Hours	
11-20 Hours	
21-30 Hours	
31-40 Hours	
41-50 Hours	
51+ Hours	
Part IV: Vehicles	
The following section relates to which you currently drive most	the characteristics of the vehicle(s) often.
32. Do you have unlimited use of a mo	otor vehicle?
Yes No	
33. Who owns the vehicle you drive m	lost often?
☐ You	Friend
Your parents/guardian	Other
Other family member	
34. What type of vehicle do you drive	most often?
Car	Pick-up truck
Minivan/Family van	Motorcycle
Sport Utility Vehicle (SUV)	
Other (please specify)	
35. How many vehicles do you have a option ONLY)	ccess to drive? (please choose one
Do not have access to a vehicle	3
	4+
2	

Traffic Injury Research Foundat	ion
36. Who pays for the costs of the veh	icle you drive most often (i.e., insurance,
	Eriend
Vour parents/guardian	
37. Who pays for the gas you use wh	en you are driving? (check all that apply)
U You	Friend
Your parents/guardian	Other
Other family member	
Part V: Driving Behaviours	
The following section asks abou	it where, when, and how you drive.
As a reminder: Your responses aggregated for analysis purpose purposes only.	will be kept confidential. Results are es and will be used for research

38. This question asks about the time period when you were driving with a G1 licence ONLY.

Please answer to the best of your recollection.

As a G1 driver, during an average month, how often did you:

	Never (0 times per month)	Once (1 time per month)	Sometimes (2-3 times (per month)	Often 4-12 times per month)	Very often (12+ times per month)
Drive on a 400 series highway	0	0	0	0	0
Drive downtown on urban streets	0	0	0	0	0
Drive in the country on rural roads	0	0	0	0	0
Drive at night	0	0	0	0	0
Wear a seat belt	0	0	0	0	0
Drive for longer than 3 hours in one trip	0	0	0	0	0
Drive during rush hour	0	0	0	0	0
Drive at least 10 km/hr over the posted speed limit	0	0	0	0	0
Drive in adverse weather conditions	0	0	0	0	0
Send or receive text messages with a hand- held phone while driving	0	0	0	0	0
Send or receive text messages with a hands-free device while driving	0	0	0	0	0
Make or receive phone calls with a hand-held phone while driving	0	0	0	0	0
Make or receive phone calls with a hands-free device while driving	0	0	0	0	0
Drive while listening to music	0	0	0	0	0
Drive while tired	0	0	0	0	0

Page 11

39. This question asks about the time period when you were driving with a G2 licence ONLY.

As a <u>G2 driver</u>, during an average month, how often do you:

Drive on a 400 series	Never (0 times per month)	Once (1 time per month)	Sometimes (2-3 times (per month)	Often (4-12 times per month)	Very often (12+ times per month)
highway	-	-	-	-	-
Drive downtown on urban streets	0	0	0	0	0
Drive in the country on rural roads	0	0	0	0	0
Drive at night	0	0	0	0	0
Wear a seat belt	0	0	0	0	0
Drive for longer than 3 hours in one trip	0	0	0	0	0
Drive during rush hour	0	0	0	0	0
Drive at least 10 km/hr over the posted speed limit	0	0	0	0	0
Drive in adverse weather conditions	0	0	0	0	0
Send or receive text messages with a hand- held phone while driving	0	0	0	0	0
Send or receive text messages with a hands-free device while driving	0	0	0	0	0
Make or receive phone calls with a hand-held phone while driving	0	0	0	0	0
Make or receive phone calls with a hands-free device while driving	0	0	0	0	0
Drive while listening to music	0	0	0	0	0
Drive while tired	0	0	0	0	0

40. This question asks about the time period when you were driving with a G2 licence ONLY.

As a <u>G2 driver</u>, during an average month, how often do you:

	Never (0 times per month)	Once (1 time per month)	Sometimes (2-3 times (per month) p	Often 4-12 times per month)	Very often (12+ times per month)
Take chances when driving for the fun of it	0	0	0	0	0
Drive with one or more teenage passengers	0	0	0	0	0
Run red lights	0	0	0	0	0
Pass other cars because it is exciting	0	0	0	0	0
Drive within 2 hours of consuming any type of drug (excluding alcohol)	0	0	0	0	0
Drive within 2 hours of consuming any amount of alcohol	0	0	0	0	0
Drive especially close to the car in front to let its driver know they should go faster or get out of the way	0	0	0	0	0
41. Some people drive e Thinking only about the Days:	every day; s past month	ome only on how r	drive a few d nany days di lease skin to	lays each i id you driv 043	month. /e?
If you did not drive at a	r in the past	. month, p	ease skip to	Q-3.	

	and the second second	-			
Traffic Injury Resea	rch Founda	ation			
42. In the past month,	how often h	ave you dr	iven:		1. 1. 1. <u>1.</u>
	Never (0 times (per month)	Once (1 time per month)	Sometimes (2-3 times) per month)	Often (4-12 times per month)	Very often (12+ times per month)
To get to and from school	0	0	0	0	0
To get to and from work		0	0	0	0
As part of your job	0	0	0	0	0
To transport your parents or siblings	0	0	0	0	0
For recreational or social activities (e.g., to/from: the shopping mall; a friend's home; a movie theater or restaurant)	0	0	0	0	0
To practice driving	0	0	0	0	0
Just to go for a drive	0	0	0	0	0
Less than 100 km pe Between 100-500 km Between 501-1000 k More than 1000 km p In addition to your selec kilometres (km) you driv	r month n per month m per month per month cted range ab ve per month	ove, if you , please sp	know the exectly:	kact numbe	r of
Part VI: Parental Inf	luences				
This section asks yo your driving.	ou about yo	our paren	ts'/guard	ians' influ	ience on
44. Do your parents/gu to a vehicle? Yes No	uardian restr	ict the hou	ırs which y	ou are allov	wed access

france injury Research Foundation	
 45. Do you have a curfew when you are driving set by your parents/guardians (i.e., an agreed upon time when you need to be h in the evening)? Yes No 	ome by
46. While driving with a G1 licence, how many teenage passengers di parents/guardian allow you to have in the vehicle?	d your
0 4+ 1 Don't know / Never asked 2 Did not drive during G1 licer 3 stage	nce
47. While driving with a G2 licence, how many teenage passengers do parents/guardian allow you to have in the vehicle?	o your
0 4+ 1 Don't know / Never asked 2 Have not driven with my G2 3 yet	licence
48. How many times have your parents/guardian talked to you about safety and the rules of the road?	t traffic
Never Once or Twice Several times	
49. Have your parents/guardians ever talked to you about:	
Yes No Drinking and Image: Comparison of the second secon	
Texting and driving?	
Distracted driving, other than texting and driving?	

Traffic Injury Research Foundation
Part VII: Alternatives to Driving
This section asks you about possible alternatives to driving, including the availability of public transportation where you live.
 50. Is there public transportation where you live (i.e., buses, trains, subway, light rail, taxis)? Yes No [SKIP TO Q53]
51. How convenient are the public transportation systems in your area to use?
Very convenient
Somewhat convenient
Not convenient at all
Don't know / N/A
52. In the average month, how often do you take public transportation?
Daily
Several times per week
Never
53. In the average month, how often do you get a ride from someone else instead of driving yourself?
Daily
Several times per week
Once per week
Once per month
Never

236 T

Traffic Injury Res	earch Four	ndation	
54. In the average	month, how o	often do you walk as a l	mode of
		get to and from a bus :	
Several times per	r week		
Once per week			
Once per month			
Never			
55. In the average transportation - even Daily Daily Several times per Once per week Once per month Never Part VIII: Driving	month, how o en if this is to r week Programs	often do you cycle as a get to and from a bus s and Resources	mode of stop?
The following qu programs and re Transportation (estions ask sources off MTO).	k you about your kno ered by Ontario's Mi	owledge of various inistry of
56. Before obtaining Transportation web	g your G1 lice site for infor	nce, did you visit Ontar mation on:	io's Ministry of
	Yes	No	Don't know / Don't
Licensing requirements			
Required documentation			
57. Before taking ye Ministry of Transpo	our G1 road to rtation websi	est to get your G2, did y ite for information on:	you visit Ontario's
	Yes	No	Don't know / Don't remember
Licensing requirements			
Required documentation			

Traffic Injury Research Foundation
58. Have you seen any of the videos available for young drivers listed on Ontario's Ministry of Transportation website entitled, "Getting your driver's licence"? Yes No Don't know / Don't remember
59. Since you passed the G1 road test, and obtained your G2 licence, have you visited Ontario's Ministry of Transportation website? Yes No Don't know / Don't remember
60. What is today's date? DD MM YYYY Today's / / / / / / / / / / / / / / / / / / /
Thank you for your help. Your time and participation is greatly appreciated. When you are finished please place this questionnaire in the prepaid envelope we have provided you with and mail it back to us.
In order to receive your \$10 please fill out the information card provided and place it in the second pre-paid envelope to mail back to us separately from the questionnaire. If you have any questions or concerns, please feel free to contact the Traffic Injury Research Foundation by mail, telephone, or email at:
Traffic Injury Research Foundation 171 Nepean Street, Suite 200 Ottawa, Ontario K2P 0B4 Email: tirf@tirf.ca Telephone: 1-613-238-5235 Toll Free: 1-877-238-5235

